por Danilo Dias Vilela » Qua Set 01, 2010 11:21
Sabe-se que os gráficos das funções reais definidas por

e

se cortam em um ponto P do eixo das ordenadas. Obtenha o valor da constante real k e o ponto P.
-
Danilo Dias Vilela
- Usuário Dedicado

-
- Mensagens: 45
- Registrado em: Qua Set 09, 2009 01:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Administração
- Andamento: cursando
por MarceloFantini » Qua Set 01, 2010 21:56
Como elas se encontram no eixo das ordenadas,

e

.

Portanto, o ponto P é

.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
Voltar para Álgebra Elementar
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- equações logaritmicas
por vinicius cruz » Dom Mar 06, 2011 19:28
- 3 Respostas
- 2640 Exibições
- Última mensagem por LuizAquino

Dom Mar 06, 2011 19:54
Logaritmos
-
- equações logarítmicas
por Luan Cordeiro » Qui Ago 04, 2011 20:42
- 2 Respostas
- 1864 Exibições
- Última mensagem por Claudin

Sex Ago 05, 2011 01:34
Logaritmos
-
- equações logarítmicas
por Luan Cordeiro » Sáb Ago 06, 2011 19:20
- 1 Respostas
- 1431 Exibições
- Última mensagem por LuizAquino

Dom Ago 07, 2011 13:39
Logaritmos
-
- Equações Logarítmicas
por lucassouza » Qua Nov 05, 2014 17:35
- 1 Respostas
- 1481 Exibições
- Última mensagem por Russman

Qua Nov 05, 2014 23:05
Logaritmos
-
- Equações Logarítmicas (cont)
por lucassouza » Qui Nov 06, 2014 00:28
- 2 Respostas
- 1717 Exibições
- Última mensagem por lucassouza

Qui Nov 06, 2014 15:59
Logaritmos
Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes
Assunto:
cálculo de limites
Autor:
Hansegon - Seg Ago 25, 2008 11:29
Bom dia.
Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado
\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]
Assunto:
cálculo de limites
Autor:
Molina - Seg Ago 25, 2008 13:25
Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.
Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo.
Caso ainda não tenha dado uma

, avisa que eu resolvo.
Bom estudo!
Assunto:
cálculo de limites
Autor:
Guill - Dom Abr 08, 2012 16:03

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.