por aline2010 » Dom Jul 25, 2010 10:57
O trinômio ax²+bx+c tem duas raízes reais e distintas;w e k são dois números reais não nulos. Então o trinômio a/w x²+kbx+wk²c
a) tem dusas raízes reais e distintas ou nenhuma raíz real, conforme o sinal de k;
b) pode ter duas, uma ou nenhuma raízes reais;
c) tem duas raízes reais e distintas se w e k forem ambos positivos, nada se podendo afirmar nos demais casos;
d) tem duas raízes reais e distintas ou nenhuma raíz real, conforme o sinal do produto wk;
e) tem sempre duas raízes reais e distintas;
-
aline2010
- Usuário Ativo

-
- Mensagens: 12
- Registrado em: Dom Jun 13, 2010 13:53
- Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
- Área/Curso: matmática
- Andamento: formado
por Loretto » Dom Jul 25, 2010 16:23
Tendo o trinômio a/w x²+kbx+wk²c ; vamos justificar porque a alternativa a é falsa, e assim poderemos concluir as respectivas alternativas :
a) tem dusas raízes reais e distintas ou nenhuma raíz real, conforme o sinal de k;
As raízes do trinômio podem não ser distintas, para isso, basta o Delta ser igual a zero, essa condição não depende apenas do sinal de k, e sim dos valores de b, a e c . As outras alternativas também reference a raízes distintas referente ao sinal de w e k, mas não podemos afirmar que o sinal de w e k trará raízes reais distintas. A alternativa "e", remete a ter sempre duas raízes reais e distintas, e também é falso. Assim, na alternativa "b" fica mais precisa a resposta, pois as raízes desse polinômio pode ser dupla, uma ou nenhuma raiz real, conforme o valor de "a" e do seu discriminante.
-
Loretto
- Usuário Dedicado

-
- Mensagens: 28
- Registrado em: Dom Jul 25, 2010 01:35
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: exatas
- Andamento: cursando
por agnesrava » Seg Mai 28, 2012 13:24
A resposta segundo o livro Fundamentos de Matemática Elementar, é a letra E
-
agnesrava
- Novo Usuário

-
- Mensagens: 1
- Registrado em: Seg Mai 28, 2012 13:18
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
Voltar para Álgebra Elementar
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- trinômio
por cazevedo » Seg Abr 25, 2011 22:19
- 2 Respostas
- 2058 Exibições
- Última mensagem por cazevedo

Ter Abr 26, 2011 19:25
Polinômios
-
- Completando o trinomio
por Carlos28 » Qui Nov 08, 2012 08:19
- 2 Respostas
- 1424 Exibições
- Última mensagem por e8group

Qui Nov 08, 2012 09:26
Equações
-
- [FATORE O TRINÔMIO]
por mirikertty » Qua Dez 19, 2012 13:14
- 2 Respostas
- 2052 Exibições
- Última mensagem por joaofonseca

Sex Dez 21, 2012 22:00
Sistemas de Equações
-
- [Trinômio] Desenvolvimento
por silviopuc » Dom Dez 29, 2013 00:55
- 3 Respostas
- 1756 Exibições
- Última mensagem por e8group

Seg Dez 30, 2013 18:28
Álgebra Elementar
-
- Trinômio Quadrado Perfeito
por Balanar » Ter Ago 10, 2010 22:48
- 2 Respostas
- 4786 Exibições
- Última mensagem por DanielFerreira

Dom Jan 08, 2012 18:05
Desafios Difíceis
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
Proporcionalidade
Autor:
silvia fillet - Qui Out 13, 2011 22:46
Divida o numero 35 em partes diretamente proporcionais a 4, 10 e 14. Em seguida divida o mesmo numero em partes proporcionais a 6, 15 e 21. explique por que os resultados sao iguais.
Assunto:
Proporcionalidade
Autor:
silvia fillet - Sáb Out 15, 2011 10:25
POR GENTILEZA PODEM VERIFICAR SE O MEU RACIOCINIO ESTÁ CERTO?
P1 = K.4 SUBSTITUINDO K POR 1,25 P1= 5
P2 = K.10 SUBSTITUINDO K POR 1,25 P2= 12,50
P3 = K.13 SUBSTITUINDO K POR 1,25 P3= 17,50
P1+P2+P3 = 35
K.4+K.10+K.13 = 35
28 K = 35
K= 1,25
P1 = K.6 SUBSTITUINDO K POR 0,835 P1= 5
P2 = K.15 SUBSTITUINDO K POR 0,835 P2 = 12,50
P3 = K.21 SUBSTITUINDO K POR 0,835 P3 = 17,50
K.6+K.15+K.21 = 35
42K = 35
K= 0,833
4/6 =10/15 =14/21 RAZÃO = 2/3
SERÁ QUE ESTÁ CERTO?
ALGUEM PODE ME AJUDAR A EXPLICAR MELHOR?
OBRIGADA
SILVIA
Assunto:
Proporcionalidade
Autor:
ivanfx - Dom Out 16, 2011 00:37
utilize a definição e não se baseie no exercícios resolvidos da redefor, assim você terá mais clareza, mas acredito que sua conclusão esteja correto, pois o motivo de darem o mesmo resultado é pq a razão é a mesma.
Assunto:
Proporcionalidade
Autor:
Marcos Roberto - Dom Out 16, 2011 18:24
Silvia:
Acho que o resultado é o mesmo pq as razões dos coeficientes e as razões entre os números são inversamente proporcionais.
Você conseguiu achar o dia em que caiu 15 de novembro de 1889?
Assunto:
Proporcionalidade
Autor:
deiasp - Dom Out 16, 2011 23:45
Ola pessoal
Tb. estou no redefor
O dia da semana em 15 de novembro de 1889, acredito que foi em uma sexta feira
Assunto:
Proporcionalidade
Autor:
silvia fillet - Seg Out 17, 2011 06:23
Bom dia,
Realmente foi uma sexta feira, como fazer os calculos para chegar ?
Assunto:
Proporcionalidade
Autor:
ivanfx - Seg Out 17, 2011 07:18
Para encontrar o dia que caiu 15 de novembro de 1889 você deve em primeiro lugar encontrar a quantidade de anos bissextos que houve entre 1889 à 2011, após isso dá uma verificada no ano 1900, ele não é bissexto, pois a regra diz que ano que é múltiplo de 100 e não é múltiplo de 400 não é bissexto.
Depois calcule quantos dias dão de 1889 até 2011, basta pegar a quantidade de anos e multiplicar por 365 + 1 dia a cada ano bissexto (esse resultado você calculou quando encontrou a quantidade de anos bissextos)
Pegue o resultado e divida por 7 e vai obter o resto.
obtendo o resto e partindo da data que pegou como referência conte a quantidade do resto para trás da semana.
Assunto:
Proporcionalidade
Autor:
silvia fillet - Seg Out 17, 2011 07:40
Bom dia,
Será que é assim:
2011 a 1889 são 121 anos sendo , 30 anos bissextos e 91 anos normais então temos:
30x366 = 10.980 dias
91x365 = 33.215 dias
incluindo 15/11/1889 - 31/12/1889 47 dias
33215+10980+47 = 44242 dias
44242:7 = 6320 + resto 2
è assim, nâo sei mais sair disso.
Assunto:
Proporcionalidade
Autor:
ivanfx - Seg Out 17, 2011 10:24
que tal descontar 1 dia do seu resultado, pois 1900 não é bissexto, ai seria 44241 e quando fizer a divisão o resto será 1
como etá pegando base 1/01/2011, se reparar bem 01/01/2011 sempre cai no mesmo dia que 15/01/2011, sendo assim se 01/01/2011 caiu em um sábado volte 1 dia para trás, ou seja, você está no sábado e voltando 1 dia voltará para sexta.então 15/11/1889 cairá em uma sexta
Assunto:
Proporcionalidade
Autor:
Kiwamen2903 - Seg Out 17, 2011 19:43
Boa noite, sou novo por aqui, espero poder aprender e ajudar quando possível! A minha resposta ficou assim:
De 1889 até 2001 temos 29 anos bissextos a começar por 1892 (primeiro múltiplo de 4 após 1889) e terminar por 2008 (último múltiplo de 4 antes de 2011). Vale lembrar que o ano 1900 não é bissexto, uma vez que é múltiplo de 100 mas não é múltiplo de 400.
De um ano normal para outro, se considerarmos a mesma data, eles caem em dias consecutivos da semana. Por exemplo 01/01/2011 – sábado, e 01/01/2010 – sexta.
De um ano bissexto para outro, se considerarmos a mesma data, um cai dois dias da semana depois do outro. Por exemplo 01/01/2008 (ano bissexto) – Terça – feira, e 01/01/09 – Quinta-feira.
Sendo assim, se contarmos um dia da semana de diferença para cada um dos 01/01 dos 122 anos que separam 1889 e 2011 mais os 29 dias a mais referentes aos anos bissextos entre 1889 e 2011, concluímos que são 151 dias da semana de diferença, o que na realidade nos trás: 151:7= 21x7+4, isto é, são 4 dias da semana de diferença. Logo, como 15/11/2011 cairá em uma terça-feira, 15/11/1889 caiu em uma sexta-feira.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.