• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Adivinhar número quando se acrescenta outro à sua direita

Adivinhar número quando se acrescenta outro à sua direita

Mensagempor remoreiraaa » Qua Jan 06, 2010 22:10

Pessoal, não tenho idéia de como resolver o seguinte problema:
"Qual o número que aumenta de 1599 quando acrescentamos à sua direita o número 15?"
Por favor, me ajudem...A resposta é 16. Obrigada.
remoreiraaa
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Qui Dez 31, 2009 01:27
Formação Escolar: GRADUAÇÃO
Área/Curso: Direito
Andamento: cursando

Re: Adivinhar número quando se acrescenta outro à sua direita

Mensagempor MarceloFantini » Qua Jan 06, 2010 22:59

Boa noite!

Seja o número ab o número pedido. Segundo o enunciado:

ab15 = ab+1599

Podemos reescrever isso como:

1000a + 100b + 15 = 10a + b + 1599

990a + 99b + 15 = 1599 \quad (\div 3)

330a + 33b + 5 = 533

330a + 33b = 528 \quad (\div 3)

110a + 11b = 176 \quad (\div 11)

10a + b = 16

Portanto:

ab = 16

Espero ter ajudado.

Um abraço.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}