• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Algebrismo. Campeonato de futebol.

Algebrismo. Campeonato de futebol.

Mensagempor Esthevam » Seg Fev 24, 2014 09:51

Ao final de um campeonato de futebol somam-se as pontuações das esquipes, obtendo-se um total de 35 pontos. Cada esquipe jogou com todos os outros adversários apenas uma vez. Determine quantos empates houve no campeonato, sabendo que cada vitória valia 3 pontos, cada empate 1 ponto e que derrotas não pontuavam.
Essa questão caiu no simulado do meu preparatório. Foi uma questão discursiva, por isso não coloquei alternativas!
Obg.
Esthevam
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Sex Fev 21, 2014 11:10
Formação Escolar: ENSINO MÉDIO
Área/Curso: Preparatório Ita
Andamento: cursando

Re: Algebrismo. Campeonato de futebol.

Mensagempor fff » Seg Fev 24, 2014 16:01

Avatar do usuário
fff
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 103
Registrado em: Sáb Dez 21, 2013 11:30
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Informática
Andamento: cursando


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}