• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Expressão com expoente decimal negativo

Expressão com expoente decimal negativo

Mensagempor cprado » Qua Dez 11, 2013 11:12

Boa Noite, Estou com dúvida na seguinte questão, principalmente na potência com expoente decimal negativo... Se alguém puder ajudar agradeço.

(UECE) Se n = (0,5 * 4^0^,^2^5 + 4^0^,^7^5)^2 ? 4^1^,^5 * (1 + 4^-^0^,^5), então
32 * n é igual a:

a) 16
b) 32
c) 48
d) 64

Agradeço desde já.
cprado
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Qua Dez 11, 2013 10:25
Formação Escolar: GRADUAÇÃO
Área/Curso: Informática
Andamento: formado

Re: Expressão com expoente decimal negativo

Mensagempor Pessoa Estranha » Qua Dez 11, 2013 17:47

Olá !

Desculpe, mas a expressão é a seguinte? (É que foi o que eu entendi do que escreveu....).

n = \left( {(0.5)({4}^{0.25})+{4}^{0.75}} \right)^{2}-{4}^{1.5}(1+{4}^{-0.5})
Pessoa Estranha
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 262
Registrado em: Ter Jul 16, 2013 16:43
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: Expressão com expoente decimal negativo

Mensagempor cprado » Qui Dez 12, 2013 13:44

Isso mesmo,

Obrigado por enquanto.
cprado
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Qua Dez 11, 2013 10:25
Formação Escolar: GRADUAÇÃO
Área/Curso: Informática
Andamento: formado

Re: Expressão com expoente decimal negativo

Mensagempor Pessoa Estranha » Qui Dez 12, 2013 16:41

Bem, para calcular {32}^{n} precisamos, primeiro, calcular o valor de n, dado por n = \left( {\left(0.5 \right)\left({4}^{0.25} \right)+{4}^{0.75}} \right)^{2} - \left( {4}^{1.5}\left(1 + {4}^{-0.5} \right) \right).

Assim, para encontrar tal valor, basta desenvolvermos:

n = \left( {\left(0.5 \right)\left({4}^{0.25} \right)+{4}^{0.75}} \right)^{2} - \left( {4}^{1.5}\left(1 + {4}^{-0.5} \right) \right)

n = {\left( (\frac{1}{2}({4})^{\frac{1}{4}}) + {4}^{\frac{3}{4}} \right)}^{2} - \left( {4}^{\frac{3}{2}}(1+{\left( \frac{1}{4} \right)}^{\frac{1}{2}}) \right)

Assim melhorou ?

Tente continuar. Se não conseguir, pode falar .... :y:
Pessoa Estranha
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 262
Registrado em: Ter Jul 16, 2013 16:43
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: Expressão com expoente decimal negativo

Mensagempor Pessoa Estranha » Sex Dez 13, 2013 21:12

Só para postar:

{a}^{-1} = \frac{1}{a}

{a}^{-2} = {\left( \frac{1}{a} \right)}^{2}

{a}^{\frac{b}{c}} = \sqrt[c]{{a}^{b}}

{a}^{\frac{1}{2}} = \sqrt[2]{{a}^{1}}

{a}^{\frac{1}{2}} = \sqrt[2]{{a}^{1}} = {a}^{0.5}
Pessoa Estranha
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 262
Registrado em: Ter Jul 16, 2013 16:43
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: Expressão com expoente decimal negativo

Mensagempor cprado » Sex Dez 13, 2013 22:31

Muito obrigado pela ajuda, estou tentando fazer, mais ainda não cheguei no resultado que é 16. Vou continuar tentando....
cprado
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Qua Dez 11, 2013 10:25
Formação Escolar: GRADUAÇÃO
Área/Curso: Informática
Andamento: formado

Re: Expressão com expoente decimal negativo

Mensagempor Pessoa Estranha » Sáb Dez 14, 2013 10:46

Bom, então vamos lá ....

Pessoa Estranha escreveu:n = \left( {\left(0.5 \right)\left({4}^{0.25} \right)+{4}^{0.75}} \right)^{2} - \left( {4}^{1.5}\left(1 + {4}^{-0.5} \right) \right).

n = \left( {\left(0.5 \right)\left({4}^{0.25} \right)+{4}^{0.75}} \right)^{2} - \left( {4}^{1.5}\left(1 + {4}^{-0.5} \right) \right)

n = {\left( (\frac{1}{2}({4})^{\frac{1}{4}}) + {4}^{\frac{3}{4}} \right)}^{2} - \left( {4}^{\frac{3}{2}}(1+{\left( \frac{1}{4} \right)}^{\frac{1}{2}}) \right)


n = \left(\left(\frac{1}{2}{2}^{\frac{2}{4}} \right) + {4}^{\frac{3}{4}} \right)-\left({4}^{\frac{3}{2}} + {4}^{\frac{3}{2}}\left({\frac{1}{4}}^{\frac{1}{2}} \right) \right)

n = \left(\left({2}^{-1}.{2}^{\frac{2}{4}} \right) + {2}^{\frac{6}{4}} \right)-\left({2}^{\frac{6}{2}} + {2}^{\frac{6}{2}}\left({2}^{\frac{-2}{2}} \right) \right)

n = \left(\left({2}^{-1}} \right) + {2}^{\frac{3}{2}} \right)-\left({2}^{3} + {2}^{3}\left({2}^{-1} \right) \right)

n = \left(\left({2}^{-1}} \right) + {2}^{\frac{3}{2}} \right)-\left(8 + 8\left({2}^{-1} \right) \right)

n = \left(\left({2}^{-1}} \right) + {2}^{\frac{3}{2}} \right)-\left(8 + 4 \right)

n = \left(\left({2}^{-1}} \right) + {2}^{\frac{3}{2}} \right)-\left(12 \right)

n = \left(\left({2}^{-1}} \right) + \sqrt[2]{{2}^{3}} \right)-\left(12 \right)

n = \left(\left({2}^{-1}} \right) + 4\sqrt[2]{2} \right)-\left(12 \right)

n = \left({2}^{-1}} \right) + 4\sqrt[2]{2} -\left(12 \right)

n = {2}^{-1}} + 4\sqrt[2]{2} -12 \rightarrow n = 4.({2}^{-3} + \sqrt[2]{2} - 3)

n = 4.(\frac{1}{8} + \sqrt[2]{2} - 3) \rightarrow n = \frac{1}{2}+4(\sqrt[2]{2}-3)

Agora que temos uma "cara" melhor para o valor de n, vamos tentar calcular o que realmente nos interessa.

32n = 32.\left( \frac{1}{2}+4(\sqrt[2]{2}-3) \right)

32n = 16+128(\sqrt[2]{2}-3)

32n = 16+128\sqrt[2]{2}-384

32n = 16+{2}^{7}{2}^{\frac{1}{2}}-384

32n = 16+{2}^{\frac{15}{2}}-384

32n = {2}^{\frac{15}{2}}-368

32n = {2}^{\frac{15}{2}}-16.23

Realmente fiz algo errado. Sinto muito, mas não consegui ajudar. Porém o raciocínio é este, mas o risco de errar em contas é maior quando o exercício é grande assim. Talvez tenha uma maneira muito mais simples de fazer.... Desculpe. :y:

Alguém do fórum, por favor, nos dê uma mão aqui !
Pessoa Estranha
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 262
Registrado em: Ter Jul 16, 2013 16:43
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: Expressão com expoente decimal negativo

Mensagempor cprado » Sáb Dez 14, 2013 16:44

Tudo bem, agradeço pelo empenho... Obrigado!
cprado
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Qua Dez 11, 2013 10:25
Formação Escolar: GRADUAÇÃO
Área/Curso: Informática
Andamento: formado

Re: Expressão com expoente decimal negativo

Mensagempor Pessoa Estranha » Sáb Dez 14, 2013 18:02

Coloque o tópico novamente, quem sabe outro possa ajudar ....
Pessoa Estranha
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 262
Registrado em: Ter Jul 16, 2013 16:43
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Proporcionalidade
Autor: silvia fillet - Qui Out 13, 2011 22:46

Divida o numero 35 em partes diretamente proporcionais a 4, 10 e 14. Em seguida divida o mesmo numero em partes proporcionais a 6, 15 e 21. explique por que os resultados sao iguais.


Assunto: Proporcionalidade
Autor: silvia fillet - Sáb Out 15, 2011 10:25

POR GENTILEZA PODEM VERIFICAR SE O MEU RACIOCINIO ESTÁ CERTO?

P1 = K.4 SUBSTITUINDO K POR 1,25 P1= 5
P2 = K.10 SUBSTITUINDO K POR 1,25 P2= 12,50
P3 = K.13 SUBSTITUINDO K POR 1,25 P3= 17,50

P1+P2+P3 = 35
K.4+K.10+K.13 = 35
28 K = 35
K= 1,25


P1 = K.6 SUBSTITUINDO K POR 0,835 P1= 5
P2 = K.15 SUBSTITUINDO K POR 0,835 P2 = 12,50
P3 = K.21 SUBSTITUINDO K POR 0,835 P3 = 17,50
K.6+K.15+K.21 = 35
42K = 35
K= 0,833


4/6 =10/15 =14/21 RAZÃO = 2/3

SERÁ QUE ESTÁ CERTO?
ALGUEM PODE ME AJUDAR A EXPLICAR MELHOR?
OBRIGADA
SILVIA


Assunto: Proporcionalidade
Autor: ivanfx - Dom Out 16, 2011 00:37

utilize a definição e não se baseie no exercícios resolvidos da redefor, assim você terá mais clareza, mas acredito que sua conclusão esteja correto, pois o motivo de darem o mesmo resultado é pq a razão é a mesma.


Assunto: Proporcionalidade
Autor: Marcos Roberto - Dom Out 16, 2011 18:24

Silvia:
Acho que o resultado é o mesmo pq as razões dos coeficientes e as razões entre os números são inversamente proporcionais.

Você conseguiu achar o dia em que caiu 15 de novembro de 1889?


Assunto: Proporcionalidade
Autor: deiasp - Dom Out 16, 2011 23:45

Ola pessoal
Tb. estou no redefor
O dia da semana em 15 de novembro de 1889, acredito que foi em uma sexta feira


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 06:23

Bom dia,
Realmente foi uma sexta feira, como fazer os calculos para chegar ?


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 07:18

Para encontrar o dia que caiu 15 de novembro de 1889 você deve em primeiro lugar encontrar a quantidade de anos bissextos que houve entre 1889 à 2011, após isso dá uma verificada no ano 1900, ele não é bissexto, pois a regra diz que ano que é múltiplo de 100 e não é múltiplo de 400 não é bissexto.
Depois calcule quantos dias dão de 1889 até 2011, basta pegar a quantidade de anos e multiplicar por 365 + 1 dia a cada ano bissexto (esse resultado você calculou quando encontrou a quantidade de anos bissextos)
Pegue o resultado e divida por 7 e vai obter o resto.
obtendo o resto e partindo da data que pegou como referência conte a quantidade do resto para trás da semana.


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 07:40

Bom dia,
Será que é assim:
2011 a 1889 são 121 anos sendo , 30 anos bissextos e 91 anos normais então temos:
30x366 = 10.980 dias
91x365 = 33.215 dias
incluindo 15/11/1889 - 31/12/1889 47 dias
33215+10980+47 = 44242 dias

44242:7 = 6320 + resto 2

è assim, nâo sei mais sair disso.


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 10:24

que tal descontar 1 dia do seu resultado, pois 1900 não é bissexto, ai seria 44241 e quando fizer a divisão o resto será 1
como etá pegando base 1/01/2011, se reparar bem 01/01/2011 sempre cai no mesmo dia que 15/01/2011, sendo assim se 01/01/2011 caiu em um sábado volte 1 dia para trás, ou seja, você está no sábado e voltando 1 dia voltará para sexta.então 15/11/1889 cairá em uma sexta


Assunto: Proporcionalidade
Autor: Kiwamen2903 - Seg Out 17, 2011 19:43

Boa noite, sou novo por aqui, espero poder aprender e ajudar quando possível! A minha resposta ficou assim:


De 1889 até 2001 temos 29 anos bissextos a começar por 1892 (primeiro múltiplo de 4 após 1889) e terminar por 2008 (último múltiplo de 4 antes de 2011). Vale lembrar que o ano 1900 não é bissexto, uma vez que é múltiplo de 100 mas não é múltiplo de 400.

De um ano normal para outro, se considerarmos a mesma data, eles caem em dias consecutivos da semana. Por exemplo 01/01/2011 – sábado, e 01/01/2010 – sexta.

De um ano bissexto para outro, se considerarmos a mesma data, um cai dois dias da semana depois do outro. Por exemplo 01/01/2008 (ano bissexto) – Terça – feira, e 01/01/09 – Quinta-feira.

Sendo assim, se contarmos um dia da semana de diferença para cada um dos 01/01 dos 122 anos que separam 1889 e 2011 mais os 29 dias a mais referentes aos anos bissextos entre 1889 e 2011, concluímos que são 151 dias da semana de diferença, o que na realidade nos trás: 151:7= 21x7+4, isto é, são 4 dias da semana de diferença. Logo, como 15/11/2011 cairá em uma terça-feira, 15/11/1889 caiu em uma sexta-feira.