• Anúncio Global
    Respostas
    Exibições
    Última mensagem

números inteiros

números inteiros

Mensagempor thadeu » Qui Nov 19, 2009 11:41

Quantos são os números inteiros p tais que 50^3<5^p<50^4?
thadeu
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 69
Registrado em: Seg Out 19, 2009 14:05
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: formado

Re: números inteiros

Mensagempor Molina » Qui Nov 19, 2009 13:14

thadeu escreveu:Quantos são os números inteiros p tais que 50^3<5^p<50^4?


Boa tarde. Vamos tentar resolver isso usando logaritimo na base 10:

50^3<5^p<50^4

log50^3<log5^p<log50^4

3*log50<p*log5<4*log50

3*log(5*10)<p*log5<4*log(5*10)

3*[log5 + log10]<p*log5<4*[log5 + log10]

3*[log5 + 1]<p*log5<4*[log5 + 1]

3A + 3<pA<4A + 4 (A = log5)

3+\frac{3}{A}<p<4+\frac{4}{A}

Temos que 3+\frac{3}{A}<8 e 4+\frac{4}{A}>9

Logo p pode ser 8 ou 9. Dois números inteiros.

:y:
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado

Re: números inteiros

Mensagempor thadeu » Qui Nov 19, 2009 13:46

Beleza Molina!
Eu só não consegui entender as duas últimas linhas.
Esses exercícios são de uma lista que me passaram e eu achei interessante colocar no site para que possamos ver diferentes maneiras de resolução.

Eu resolvi essa questão da seguinte maneira:
Fazendo 50=(2 \times 5^2)

(2 \times 5^2)^3<5^p<(2 \times 5^2)^4

2^3 \times 5^6<5^p<2^4 \times 5^8

Dividindo todos por 5^6

\frac{2^3 \times 5^6}{5^6}<\frac{5^p}{5^6}<\frac{2^4 \times 5^8}{5^6}

8<5^{p-6}<400

Entre 8 e 400 as seguintes potências de base 5:


5^1=5\,,\,\,5^2=25\,,\,\,5^3=125\,,\,\,5^4=625

Repare que apenas 5^2\,\,\,e\,\,\,5^3 estão entre 8 e 400.

5^{p-6}=5^2\,\Rightarrow\,p-6=2\,\Rightarrow\,p=8

5^{p-6}=5^3\,\Rightarrow\,p-6=3\,\Rightarrow\,p=9

Resposta igual a 2.
thadeu
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 69
Registrado em: Seg Out 19, 2009 14:05
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: formado


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.