• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Outra de Álgebra

Outra de Álgebra

Mensagempor Cleyson007 » Sáb Ago 24, 2013 00:20

Seja G um grupo e a,b\,\in G. Sabendo-se que a ordem de a é 2, a ordem de b é 3 e a.b=b.a, determine a ordem de a.b.
A Matemática está difícil? Não complica! Mande para cá: descomplicamat@hotmail.com

Imagem
Avatar do usuário
Cleyson007
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1228
Registrado em: Qua Abr 30, 2008 00:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática UFJF
Andamento: formado

Re: Outra de Álgebra

Mensagempor Renato_RJ » Sáb Ago 24, 2013 00:47

Cleyson007 escreveu:Seja G um grupo e a,b\,\in G. Sabendo-se que a ordem de a é 2, a ordem de b é 3 e a.b=b.a, determine a ordem de a.b.


Boa noite !!!

Vejamos, G é um grupo abeliano (pois a \cdot b = b \cdot a), os elementos a e b possuem ordem finita (O(a) = 2 e O(b) = 3) e o MDC (O(a),O(b)) = 1 (MDC(2,3) = 1) então O(ab) = O(a)O(b), logo a ordem de a.b = 6 (isso é uma proposição vinda do Teorema de Cauchy).

Abraços...
Editado pela última vez por Renato_RJ em Sáb Ago 24, 2013 17:56, em um total de 1 vez.
Iniciando a minha "caminhada" pela matemática agora... Tenho muito o quê aprender...
Avatar do usuário
Renato_RJ
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 306
Registrado em: Qui Jan 06, 2011 15:47
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado em Matemática
Andamento: cursando

Re: Outra de Álgebra

Mensagempor Cleyson007 » Sáb Ago 24, 2013 11:13

Renato, estava pensando por aqui e acho que a resposta também poderia ser dada pelo Teorema de Lagrange. O que acha?
A Matemática está difícil? Não complica! Mande para cá: descomplicamat@hotmail.com

Imagem
Avatar do usuário
Cleyson007
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1228
Registrado em: Qua Abr 30, 2008 00:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática UFJF
Andamento: formado

Re: Outra de Álgebra

Mensagempor Renato_RJ » Sáb Ago 24, 2013 14:42

Cleyson007 escreveu:Renato, estava pensando por aqui e acho que a resposta também poderia ser dada pelo Teorema de Lagrange. O que acha?


Pode sim, mas eu acho que é "dar tiro de canhão para matar mosquito"....
Iniciando a minha "caminhada" pela matemática agora... Tenho muito o quê aprender...
Avatar do usuário
Renato_RJ
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 306
Registrado em: Qui Jan 06, 2011 15:47
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado em Matemática
Andamento: cursando

Re: Outra de Álgebra

Mensagempor Cleyson007 » Sáb Ago 24, 2013 19:28

Realmente rsrsrs :lol:
A Matemática está difícil? Não complica! Mande para cá: descomplicamat@hotmail.com

Imagem
Avatar do usuário
Cleyson007
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1228
Registrado em: Qua Abr 30, 2008 00:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática UFJF
Andamento: formado


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}