por chronoss » Dom Abr 21, 2013 16:52
Sejam a, b ,c números reais positivos distintos dois a dois tais que a² + b² - ab = c² .
Prove que o produto ( a - c )( b - c ) é negativo
-
chronoss
- Usuário Dedicado

-
- Mensagens: 34
- Registrado em: Qui Abr 18, 2013 13:59
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
por young_jedi » Seg Abr 22, 2013 12:11
da equação nos tiramos que



mis tabme podemos ter que



então


como todos os numero são postivos, então o denominador (a+c)(b+c) tambem é positivo e o produto ab tabem é positivo
mas se b-a for positivo então a-b é negativo
e se b-a for negativo então a-b é positivo
ou seja uma das duas é negtiva, como os demais termos são positivos então o resultado é algo negativo
-
young_jedi
- Colaborador Voluntário

-
- Mensagens: 1239
- Registrado em: Dom Set 09, 2012 10:48
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica - UEL
- Andamento: formado
por e8group » Seg Abr 22, 2013 13:36
Pensei de outra forma também .
A prova é por contradição (não é única,há outras possibilidades) .
Vamos supor que o produto

é positivo ,isto é ,

.
O item

ocorrerá
(ii)
Mas ,foi dado que

.Deixando

em evidência e somando-se

em ambos membros ,obtemos que

.Como

,decorre que (iv)

e

.Além disso ,pela suposição do produto ser positivo ,segue

.
Desenvolvendo ambas inequações ,obtemos que

.
Conclusão : O item (ii) contradiz (iv) ,da mesma forma , (iii) conttradiz (v) ,logo o produto

é negativo .
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por chronoss » Seg Abr 22, 2013 14:23
Obrigado aos dois.
-
chronoss
- Usuário Dedicado

-
- Mensagens: 34
- Registrado em: Qui Abr 18, 2013 13:59
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
Voltar para Álgebra Elementar
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Prove: n(A X B) = n(A) * n(B)
por juliomarcos » Dom Set 14, 2008 02:58
- 3 Respostas
- 5132 Exibições
- Última mensagem por admin

Qua Set 24, 2008 05:33
Conjuntos
-
- Prove que
por Balanar » Dom Ago 29, 2010 17:22
- 1 Respostas
- 2216 Exibições
- Última mensagem por MarceloFantini

Seg Ago 30, 2010 01:24
Álgebra Elementar
-
- Prove
por chronoss » Seg Abr 29, 2013 20:40
- 1 Respostas
- 1872 Exibições
- Última mensagem por chronoss

Sáb Mai 04, 2013 13:55
Álgebra Elementar
-
- PROVE
por pedro22132938 » Sex Ago 21, 2015 20:10
- 1 Respostas
- 2714 Exibições
- Última mensagem por e8group

Dom Ago 23, 2015 20:21
Cálculo: Limites, Derivadas e Integrais
-
- Prove que:
por serhumano0100 » Sex Fev 28, 2020 14:44
- 2 Respostas
- 3002 Exibições
- Última mensagem por adauto martins

Sáb Mar 07, 2020 12:39
Geometria Analítica
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
[Função] do primeiro grau e quadratica
Autor:
Thassya - Sáb Out 01, 2011 16:20
1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?
2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?
3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?
Assunto:
[Função] do primeiro grau e quadratica
Autor:
Neperiano - Sáb Out 01, 2011 19:46
Ola
Qual as suas dúvidas?
O que você não está conseguindo fazer?
Nos mostre para podermos ajudar
Atenciosamente
Assunto:
[Função] do primeiro grau e quadratica
Autor:
joaofonseca - Sáb Out 01, 2011 20:15
1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.
Em

substitui-se
m, substitui-se
y e
x por um dos pares ordenados, e resolve-se em ordem a
b.
2)Na equação

não existem zeros.Senão vejamos
Completando o quadrado,
As coordenadas do vertice da parabola são
O eixo de simetria é a reta

.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.
f(-7)=93
f(10)=59
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.