por Maria Livia » Seg Mar 04, 2013 17:56
Por que o número natural 2 (elevado a 30) -1 não é primo?
-
Maria Livia
- Usuário Parceiro

-
- Mensagens: 79
- Registrado em: Seg Ago 13, 2012 13:03
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
por marinalcd » Seg Mar 04, 2013 18:19
Não entendi muito bem sua expressão, mas se for isso:

Porque o resultado é um número par e é divisível por 2, 3, 4, 6, 8, .....
Independentemente do sinal.
O sinal só quer dizer que o resultado será negativo. Por exemplo, 3072:3 = -1024.
Mas isso não quer dizer que ele não é múltiplo.
-
marinalcd
- Colaborador Voluntário

-
- Mensagens: 143
- Registrado em: Sex Abr 27, 2012 21:25
- Formação Escolar: GRADUAÇÃO
- Área/Curso: engenharia
- Andamento: cursando
por Maria Livia » Seg Mar 04, 2013 18:36
Sem o parêntese a expressão é 2 elevado a 30 depois o menos um fora do expoente
-
Maria Livia
- Usuário Parceiro

-
- Mensagens: 79
- Registrado em: Seg Ago 13, 2012 13:03
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
por e8group » Seg Mar 04, 2013 20:15
Boa noite parece que sua expressão é esta

certo ?
Para mostra que

não é primo basta mostra que existe

naturais tais que

com

ou

.
OBS.:
Lembre-se ,todo número inteiro não primo é produto de primos.
Note que

;assim,fazendo

,obtemos :

,isto mostra que

não é primo .
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
Voltar para Álgebra Elementar
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- UFPE
por Artur » Qui Abr 08, 2010 17:53
- 1 Respostas
- 3906 Exibições
- Última mensagem por Molina

Qui Abr 08, 2010 18:11
Álgebra Elementar
-
- Ufpe
por Maria Livia » Seg Mar 18, 2013 16:47
- 6 Respostas
- 5555 Exibições
- Última mensagem por timoteo

Ter Mar 19, 2013 12:16
Geometria Espacial
-
- UFPE Lógica
por Abelardo » Qua Mar 09, 2011 20:53
- 10 Respostas
- 13189 Exibições
- Última mensagem por Abelardo

Sáb Mar 12, 2011 03:18
Álgebra Elementar
-
- Probabilidade da UFPE
por [NewtoN] » Qua Dez 21, 2011 12:05
- 2 Respostas
- 4870 Exibições
- Última mensagem por [NewtoN]

Qua Dez 21, 2011 15:47
Estatística
-
- [Análise combinatória] UFPE
por rochadapesada » Seg Abr 08, 2013 20:30
- 2 Respostas
- 4919 Exibições
- Última mensagem por rochadapesada

Ter Abr 09, 2013 03:55
Análise Combinatória
Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.