• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Simplificação

Simplificação

Mensagempor Rafael Sposito » Dom Fev 17, 2013 13:44

Olá,

Gostaria de saber se essa simplificação está correta, caso não, gentilmente peço que me mostrem a melhor forma de solucionar.

Exercício: Expanda e simplifique as expressão: 3(x+6) 4(2x-5)
3(x+6) 4(2x-5) = 3x+18+8x-20 = 3x+8x + 18-20 = 11x-2

Muito Grato,
Rafael Sposito
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Dom Fev 17, 2013 13:35
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: cursando

Re: Simplificação

Mensagempor DanielFerreira » Dom Fev 17, 2013 13:58

Olá Rafael,
seja bem-vindo!

Se 3(x + 6) + 4(2x - 4), então, sim! Está correto.
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado

Re: Simplificação

Mensagempor Rafael Sposito » Dom Fev 17, 2013 16:10

Muito Obrigado...

Poderia me ajudar com essa outra questão de simplificação?!

\frac{x²+3x+2}{x²-x-2}

Eu tentei fazer da seguinte forma:

x².{x}^{-2}.3x.{-x}^{-1}.2.{-2}^{-1}

x.-3x.-4

-3x².-4

Se estiver errado, eu imagino que possa parecer um meio estranho, mas eu tentei trabalhar com os expoentes. Eu não consegui imaginar uma solução que não fosse essa ou fazer as equações com bascara, que daria um resultado de:

\frac{(-4)+(-5)}{-7}

Muito grato desde já!

PS: Onde estiver um A maisculo, quer dizer um sinal negativo do expoente. Eu coloquei certo no editor, porem apareceu assim aqui. :S
Rafael Sposito
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Dom Fev 17, 2013 13:35
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: cursando

Re: Simplificação

Mensagempor DanielFerreira » Dom Fev 17, 2013 17:21

Por questões de organização, para cada questão deverás abrir um novo tópico, ok?!

A sua fração é assim?

\frac{x^{- 2}+  3x + 2}{x^{- 2} - x - 2}

Se for, ela é digitada da seguinte forma:

Código: Selecionar todos
[tex]\frac{x^{- 2}+  3x + 2}{x^{- 2} - x - 2}[/tex]


Até breve!

Daniel.
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59