• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Equação exponencial]

[Equação exponencial]

Mensagempor SCHOOLGIRL+T » Seg Nov 12, 2012 11:44

Supondo x um número real, (x>0 e x\neq1), a inequação {x}^{2x-1}<{x}^{3} tem como solução
a) 0<x<3
b) x<1
c) x>2
d) 1<x<2
Bom, eles disseram que x<0, mas, quando igualamos as bases, para mantermos o sinal de inequação ou inverter, precisamos saber se a base é maior ou menor que 1. Nesse caso, a base é x. Bom, considerando que a base é maior que 1, encontrei x<2 (não tem alternativa) e considerando que a base é menor que 1, encontrei x>2 e considerei que esta é a resposta. Está correto o meu pensamento?
SCHOOLGIRL+T
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 60
Registrado em: Qua Nov 07, 2012 08:59
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: [Equação exponencial]

Mensagempor young_jedi » Seg Nov 12, 2012 17:11

considerando que a base é maior que 1 voce encontrou que x<2 portanto

1<x<2

agora considerando que a base é menor que 1 voce encontrou que x>2

mais repare que isto é impossivel pois não tem como um numero x ser maior que 2 e menor que 1 ao mesmo tempo logo a opção acima é a correta.
letra d)
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: [Equação exponencial]

Mensagempor SCHOOLGIRL+T » Seg Nov 12, 2012 20:19

young_jedi escreveu:considerando que a base é maior que 1 voce encontrou que x<2 portanto

1<x<2

agora considerando que a base é menor que 1 voce encontrou que x>2

mais repare que isto é impossivel pois não tem como um numero x ser maior que 2 e menor que 1 ao mesmo tempo logo a opção acima é a correta.
letra d)


Obrigada^^
SCHOOLGIRL+T
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 60
Registrado em: Qua Nov 07, 2012 08:59
Formação Escolar: ENSINO MÉDIO
Andamento: cursando


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}