por MarceloFantini » Seg Nov 14, 2011 00:28
Ah, ela quis dizer o Ricardo. Bom, espero não ter sido ofensivo na mensagem referenciada.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por jaquehlima17 » Seg Nov 14, 2011 15:03
loscarfer escreveu:MarceloFantini escreveu:Como eu disse anteriormente, eu concordo com você que o objetivo do fórum não é resolver listas de exercícios, mas a maneira como você criticou foi ofensiva, não construtiva.
Não, não entendi o que você quis dizer. Está indignado por eu não saber frações contínuas? Desculpe, mas eu não me lembro de ter aprendido isso e sinceramente não me faz falta até hoje, o dia que for necessário tenha a certeza que eu terei o empenho para aprender bem. Como alguém passa no processo de seleção? Aprendendo a pensar. No vestibular foi cobrado muito mais saber sobre funções, matrizes, polinômios, trigonometria, geometria plana, analítica, combinatórica, do que frações contínuas. E essas foram minhas preocupações.
E por último, reforçando: este fórum aceita pessoas críticas, não pessoas ofensivas.
vc ta equivocado nao escrevi aquilo a vc,foi pro ricardo que esta enchendo saco,tbm sou do redefor,me desculpe
-
jaquehlima17
- Novo Usuário

-
- Mensagens: 2
- Registrado em: Seg Out 31, 2011 21:27
- Formação Escolar: GRADUAÇÃO
- Área/Curso: matematica
- Andamento: formado
Voltar para Álgebra Elementar
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Números Irracionais] Soma de irracionais dando um racional
por rnts » Seg Mai 21, 2012 16:15
- 1 Respostas
- 1701 Exibições
- Última mensagem por Guill

Sáb Mai 26, 2012 16:07
Álgebra Elementar
-
- Números irracionais
por cristina » Qua Set 16, 2009 23:40
- 1 Respostas
- 1966 Exibições
- Última mensagem por Marcampucio

Qui Set 17, 2009 00:18
Álgebra Elementar
-
- Números irracionais
por Marcia » Seg Nov 15, 2010 19:41
- 1 Respostas
- 1681 Exibições
- Última mensagem por Rogerio Murcila

Ter Nov 16, 2010 10:22
Álgebra Elementar
-
- números irracionais
por jose henrique » Sáb Fev 12, 2011 20:35
- 5 Respostas
- 5945 Exibições
- Última mensagem por Dan

Sáb Fev 12, 2011 21:39
Álgebra Elementar
-
- Números irracionais
por lacesar » Dom Abr 12, 2015 16:52
- 1 Respostas
- 2194 Exibições
- Última mensagem por adauto martins

Ter Mai 08, 2018 18:41
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.