• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Média Geométrica

Média Geométrica

Mensagempor Balanar » Seg Ago 30, 2010 05:56

Observe abaixo a semi-reta orientada e um segmento de medida 1. Determine o ponto desse segmento inicial (x), tal que ele seja média geométrica do segmento inicial e do segmento restante
................................................................> Reais positivos
0----------------x------1

Resposta:
x=(-1+raiz de 5)/2
Olha pra ser sincero a única coisa que sei e que a média geométrica é:
raiz enésima do produto de x.
Balanar
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 72
Registrado em: Qua Dez 03, 2008 07:18
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Média Geométrica

Mensagempor Douglasm » Seg Ago 30, 2010 19:00

Neste caso, nós temos que interpretar o problema da seguinte forma: a média geométrica entre o segmento inicial (1 u) e o restante do segmento, após ser determinado nele um ponto x (1-x u), tem um valor igual ao desse ponto. Ou seja:

\sqrt{1.(1-x)} = x \;\therefore

1-x = x^2 \;\therefore

x^2 + x - 1 = 0 \;\therefore

x = \frac{\sqrt{5} - 1}{2}^*

* Note que a raiz negativa não nos interessa, haja vista que não pertence ao segmento pedido.
Avatar do usuário
Douglasm
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 270
Registrado em: Seg Fev 15, 2010 10:02
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Média Geométrica

Mensagempor Balanar » Seg Ago 30, 2010 19:04

Excelente Resposta.
VLW
Balanar
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 72
Registrado em: Qua Dez 03, 2008 07:18
Formação Escolar: ENSINO MÉDIO
Andamento: cursando


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}