• Anúncio Global
    Respostas
    Exibições
    Última mensagem

mmc, 12 em 12 ou 15 em 15

mmc, 12 em 12 ou 15 em 15

Mensagempor aprendiz da vida » Sex Jul 23, 2010 19:00

olá,
tenho esta questão de mmc
"se contarmos as figurinhas que Rui tem de 12 em 12 ou de 15 em 15 sempre encontramos o mesmo numero. Quantas figurinhas ele tem?"

Por favor, me dêem apenas uma pista de como devo proceder (não a solução!).
aprendiz da vida
Novo Usuário
Novo Usuário
 
Mensagens: 8
Registrado em: Ter Mai 04, 2010 18:53
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: mmc, 12 em 12 ou 15 em 15

Mensagempor Lucio Carvalho » Sex Jul 23, 2010 20:35

Olá,
Se quizermos achar o mmc de 12 e 15, devemos fazer a decomposição em factores primos. Assim:
12 = 2 x 2 x 3
15 = 3 x 5
-------------------------
mmc (12, 15) = 2 x 2 x 3 x 5 = 60 (nota: devemos multiplicar os factores comuns de maior expoente com os factores não comuns)

Resposta: O Rui tem no mínimo 60 figurinhas.

(Repare que eu disse "no mínimo" porque se nós multiplicarmos 12 e 15 obtemos: 12 x 15 = 180.
180 é um múltiplo de 12 e 15, mas não é o mínimo múltiplo comum)

Espero ter ajudado!
Avatar do usuário
Lucio Carvalho
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 127
Registrado em: Qua Ago 19, 2009 11:33
Localização: Rua 3 de Fevereiro - São Tomé
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Física/Química
Andamento: formado


Voltar para Álgebra Elementar

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}