por ckde » Qua Jul 14, 2010 12:20
Sejam , a,b,c, d números primos distintos e seja x um número primo que divide o número abcd.
Prove que x é diferente de a,b ,c , d.
-
ckde
- Novo Usuário

-
- Mensagens: 6
- Registrado em: Qua Jul 14, 2010 10:23
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
por MarceloFantini » Qua Jul 14, 2010 15:32
Essa questão é meio estranha...de onde pegou?
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por ckde » Qua Jul 14, 2010 17:39
De uma olimpíada de matemática. Sabe resolver?
-
ckde
- Novo Usuário

-
- Mensagens: 6
- Registrado em: Qua Jul 14, 2010 10:23
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
por Molina » Qua Jul 14, 2010 21:39
Boa noite.
Vou fazer uma análise particular e vamos ver onde chegamos.
Sejam 2, 3, 5 e 7. Seja
x um número primo que divide o número 2357.
Nesta
página achei que este número é primo. (Há bastante coisa curiosa sobre este número, vale apena conferir).
Logo

, que é diferente dos números pegos no exemplo.
Agora não consegui ver nenhuma relação para provar que com quaisquer números que eu pegar vou obter o mesmo resultado que encontramos.
Qualquer colaboração é bem vinda!
Diego Molina |
CV |
FB |
.COMEquipe AjudaMatemática.com"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
-

Molina
- Colaborador Moderador - Professor

-
- Mensagens: 1551
- Registrado em: Dom Jun 01, 2008 14:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - UFSC
- Andamento: formado
por Douglasm » Qui Jul 15, 2010 13:30
Estava pensando nesse problema também Molina (e são bacanas estas curiosidades envolvendo 2357 =P). Mas voltando à questão, essa relação deixa de ser válida para 7532, por exemplo (é divisível por 2), sendo assim, tenho minhas dúvidas quanto a ser possível conseguir essa prova...
-

Douglasm
- Colaborador Voluntário

-
- Mensagens: 270
- Registrado em: Seg Fev 15, 2010 10:02
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
por Tom » Sex Jul 16, 2010 00:54
A fim de nos previnir de eventuais erros no enunciado, penso que deveríamos analisar a seguinte conjectura:
Dados os primos distintos

, existe um primo

, diferente dos supracitados, que divide o número

Tom
-
Tom
- Usuário Parceiro

-
- Mensagens: 75
- Registrado em: Sex Jul 02, 2010 00:42
- Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
- Área/Curso: Automação e Controle Industrial
- Andamento: formado
por ckde » Sáb Jul 17, 2010 13:01
Desculpem, realmente ficou difícil sem usar o LaTeX... A questão tem um errinho. O certo é: seja

um número primo que divide o número

, é ab + cd e não abcd
-
ckde
- Novo Usuário

-
- Mensagens: 6
- Registrado em: Qua Jul 14, 2010 10:23
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
por Douglasm » Sáb Jul 17, 2010 13:17
Então "ab" e "cd" são produtos? Se for assim é fácil. Note que ab+cd não é divisível por nenhum deles (dito que a, b, c e d são primos). Por exemplo:

O mesmo vale para b, c e d. Logo, é evidente que, se ab+cd não é divisível por qualquer dos primos supracitados, ele é divisível por, pelo menos, um outro primo x.
-

Douglasm
- Colaborador Voluntário

-
- Mensagens: 270
- Registrado em: Seg Fev 15, 2010 10:02
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
por Molina » Sáb Jul 17, 2010 14:12
Douglasm escreveu:Então "ab" e "cd" são produtos? Se for assim é fácil. Note que ab+cd não é divisível por nenhum deles (dito que a, b, c e d são primos). Por exemplo:

O mesmo vale para b, c e d. Logo, é evidente que, se ab+cd não é divisível por qualquer dos primos supracitados, ele é divisível por, pelo menos, um outro primo x.
Boa tarde, Douglas.
Acho que é isso que você colocou mesmo, pois o autor da questão criou um
novo tópico, onde diz:
ckde escreveu:Sejam , a,b,c, d números primos distintos e seja x um número primo que divide o número ab+cd.
Prove que x é diferente de a,b ,c , d.

Diego Molina |
CV |
FB |
.COMEquipe AjudaMatemática.com"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
-

Molina
- Colaborador Moderador - Professor

-
- Mensagens: 1551
- Registrado em: Dom Jun 01, 2008 14:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - UFSC
- Andamento: formado
por Tom » Sáb Jul 17, 2010 14:13
ckde escreveu:Desculpem, realmente ficou difícil sem usar o LaTeX... A questão tem um errinho. O certo é: seja

um número primo que divide o número

, é ab + cd e não abcd
aff... totalmente errado

Tom
-
Tom
- Usuário Parceiro

-
- Mensagens: 75
- Registrado em: Sex Jul 02, 2010 00:42
- Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
- Área/Curso: Automação e Controle Industrial
- Andamento: formado
por ckde » Sáb Jul 17, 2010 22:23
Agora a questão está correta... Mas, do jeito do Douglas, não está provado o que foi pedido... Mas a idéia foi boa...
-
ckde
- Novo Usuário

-
- Mensagens: 6
- Registrado em: Qua Jul 14, 2010 10:23
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
por Tom » Sáb Jul 17, 2010 22:29
Ckde, como é a pergunta no fim das contas?
Tom
-
Tom
- Usuário Parceiro

-
- Mensagens: 75
- Registrado em: Sex Jul 02, 2010 00:42
- Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
- Área/Curso: Automação e Controle Industrial
- Andamento: formado
Voltar para Álgebra Elementar
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Números primos
por mony0771 » Qui Abr 23, 2009 10:54
- 2 Respostas
- 3958 Exibições
- Última mensagem por mony0771

Qui Abr 23, 2009 15:28
Álgebra Elementar
-
- Numeros Primos
por Neperiano » Sex Abr 24, 2009 20:15
- 6 Respostas
- 5504 Exibições
- Última mensagem por Neperiano

Sáb Abr 25, 2009 10:23
Problemas do Cotidiano
-
- Fatores primos
por GMAT2010 » Qua Fev 03, 2010 20:59
- 3 Respostas
- 1720 Exibições
- Última mensagem por GMAT2010

Sáb Fev 06, 2010 07:40
Funções
-
- Números Primos
por Abelardo » Qua Mar 09, 2011 21:38
- 1 Respostas
- 2920 Exibições
- Última mensagem por Abelardo

Qua Mar 09, 2011 21:41
Álgebra Elementar
-
- OBM - Números primos
por Abelardo » Sáb Mar 12, 2011 16:54
- 4 Respostas
- 4463 Exibições
- Última mensagem por Abelardo

Dom Mar 13, 2011 13:26
Álgebra Elementar
Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.