• Anúncio Global
    Respostas
    Exibições
    Última mensagem

PRIMOS

PRIMOS

Mensagempor ckde » Qua Jul 14, 2010 12:20

Sejam , a,b,c, d números primos distintos e seja x um número primo que divide o número abcd.
Prove que x é diferente de a,b ,c , d.
ckde
Novo Usuário
Novo Usuário
 
Mensagens: 6
Registrado em: Qua Jul 14, 2010 10:23
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: PRIMOS

Mensagempor MarceloFantini » Qua Jul 14, 2010 15:32

Essa questão é meio estranha...de onde pegou?
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: PRIMOS

Mensagempor ckde » Qua Jul 14, 2010 17:39

De uma olimpíada de matemática. Sabe resolver?
ckde
Novo Usuário
Novo Usuário
 
Mensagens: 6
Registrado em: Qua Jul 14, 2010 10:23
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: PRIMOS

Mensagempor Molina » Qua Jul 14, 2010 21:39

Boa noite.

Vou fazer uma análise particular e vamos ver onde chegamos.

Sejam 2, 3, 5 e 7. Seja x um número primo que divide o número 2357.

Nesta página achei que este número é primo. (Há bastante coisa curiosa sobre este número, vale apena conferir).

Logo x=2357, que é diferente dos números pegos no exemplo.

Agora não consegui ver nenhuma relação para provar que com quaisquer números que eu pegar vou obter o mesmo resultado que encontramos.

Qualquer colaboração é bem vinda!
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado

Re: PRIMOS

Mensagempor Douglasm » Qui Jul 15, 2010 13:30

Estava pensando nesse problema também Molina (e são bacanas estas curiosidades envolvendo 2357 =P). Mas voltando à questão, essa relação deixa de ser válida para 7532, por exemplo (é divisível por 2), sendo assim, tenho minhas dúvidas quanto a ser possível conseguir essa prova...
Avatar do usuário
Douglasm
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 270
Registrado em: Seg Fev 15, 2010 10:02
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: PRIMOS

Mensagempor Tom » Sex Jul 16, 2010 00:54

A fim de nos previnir de eventuais erros no enunciado, penso que deveríamos analisar a seguinte conjectura:

Dados os primos distintos a,b,c,d, existe um primo x, diferente dos supracitados, que divide o número abcd
Tom
Tom
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 75
Registrado em: Sex Jul 02, 2010 00:42
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Automação e Controle Industrial
Andamento: formado

Re: PRIMOS

Mensagempor ckde » Sáb Jul 17, 2010 13:01

Desculpem, realmente ficou difícil sem usar o LaTeX... A questão tem um errinho. O certo é: seja x um número primo que divide o número ab + cd, é ab + cd e não abcd
ckde
Novo Usuário
Novo Usuário
 
Mensagens: 6
Registrado em: Qua Jul 14, 2010 10:23
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: PRIMOS

Mensagempor Douglasm » Sáb Jul 17, 2010 13:17

Então "ab" e "cd" são produtos? Se for assim é fácil. Note que ab+cd não é divisível por nenhum deles (dito que a, b, c e d são primos). Por exemplo:



O mesmo vale para b, c e d. Logo, é evidente que, se ab+cd não é divisível por qualquer dos primos supracitados, ele é divisível por, pelo menos, um outro primo x.
Avatar do usuário
Douglasm
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 270
Registrado em: Seg Fev 15, 2010 10:02
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: PRIMOS

Mensagempor Molina » Sáb Jul 17, 2010 14:12

Douglasm escreveu:Então "ab" e "cd" são produtos? Se for assim é fácil. Note que ab+cd não é divisível por nenhum deles (dito que a, b, c e d são primos). Por exemplo:



O mesmo vale para b, c e d. Logo, é evidente que, se ab+cd não é divisível por qualquer dos primos supracitados, ele é divisível por, pelo menos, um outro primo x.

Boa tarde, Douglas.

Acho que é isso que você colocou mesmo, pois o autor da questão criou um novo tópico, onde diz:

ckde escreveu:Sejam , a,b,c, d números primos distintos e seja x um número primo que divide o número ab+cd.
Prove que x é diferente de a,b ,c , d.


:y:
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado

Re: PRIMOS

Mensagempor Tom » Sáb Jul 17, 2010 14:13

ckde escreveu:Desculpem, realmente ficou difícil sem usar o LaTeX... A questão tem um errinho. O certo é: seja x um número primo que divide o número ab + cd, é ab + cd e não abcd



aff... totalmente errado :n:
Tom
Tom
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 75
Registrado em: Sex Jul 02, 2010 00:42
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Automação e Controle Industrial
Andamento: formado

Re: PRIMOS

Mensagempor ckde » Sáb Jul 17, 2010 22:23

Agora a questão está correta... Mas, do jeito do Douglas, não está provado o que foi pedido... Mas a idéia foi boa...
ckde
Novo Usuário
Novo Usuário
 
Mensagens: 6
Registrado em: Qua Jul 14, 2010 10:23
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: PRIMOS

Mensagempor Tom » Sáb Jul 17, 2010 22:29

Ckde, como é a pergunta no fim das contas?
Tom
Tom
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 75
Registrado em: Sex Jul 02, 2010 00:42
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Automação e Controle Industrial
Andamento: formado


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 8 visitantes

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?