• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Equação que está me tirando os cabelos rs

Equação que está me tirando os cabelos rs

Mensagempor matmat2 » Dom Mai 30, 2010 21:25

raiz cubica (2x-1) - raiz cubica (x-1) = 1

(2x-1)^1/3 - (x-1)^1/3 = 1

oriunda de ex. de fisica

não consigo desenvolver, as respostas caso ajude são 1 e 2(14+3*raizquadrada 21)

muito obrigado a quem conseguir desenvolver
matmat2
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Dom Mai 30, 2010 21:20
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia
Andamento: formado

Re: Equação que está me tirando os cabelos rs

Mensagempor Mathmatematica » Sáb Jun 05, 2010 05:35

Vamos tentar desenvolver... (Primeiramente, olá. :$ )

\sqrt[3]{2x-1}-\sqrt[3]{x-1}=1

Essa é uma equação irracional. Vamos então impor as condições de existência. Como 1>0 então devemos ter que \sqrt[3]{2x-1}>\sqrt[3]{x-1} ou devemos ter que \sqrt[3]{2x-1}<\sqrt[3]{x-1} (pois podemos ter resultados negativos: raiz de índice ímpar). Para o 1º caso temos que 2x-1>x-1\Longrightarrow x>0. Mas isso só ocorre se 2x-1>0\Longrightarrow x>\dfrac{1}{2} e x-1>0\Longrightarrow x>1. Fazendo a intercessão (vamos interceder para que eu nunca mais cometa esse erro), digo interseção das inequações teremos que x>1 satisfaz o primeiro caso.

Para o 2º caso temos a inversão das inequações, certo? Sendo assim teremos x<0 e x<\dfrac{1}{2} e x<1 e a interseção dessas condições nos dá x<0. Se k é solução dessa inequação então k\in\mathbb R-[0,1]. Logo a(s) solução(ões) dessa inequação não está entre zero e 1, inclusive.
Vamos aos cálculos:

\sqrt[3]{2x-1}-\sqrt[3]{x-1}=1

(\sqrt[3]{2x-1}-\sqrt[3]{x-1})^3=1^3

(2x-1)-3\sqrt[3]{(2x-1)^2(x-1)}+3\sqrt[3]{(2x-1)(x-1)^2}-(x-1)=1

2x-x-1+1-3\sqrt[3]{(2x-1)(x-1)}(\sqrt[3]{2x-1}-\sqrt[3]{x-1})=1

x-1=3\sqrt[3]{(2x-1)(x-1)}(\sqrt[3]{2x-1}-\sqrt[3]{x-1})

Da primeira equação (que por sinal é semelhante às demais) temos que \sqrt[3]{2x-1}-\sqrt[3]{x-1}=1. Então:

x-1=3\sqrt[3]{(2x-1)(x-1)}

(x-1)^3=27(2x-1)(x-1)\Longleftrightarrow (x-1)^3-27(2x-1)(x-1)=0

(x-1)[(x-1)^2-27(2x-1)]\Longrightarrow x-1=0 \ $ou$ \ (x-1)^2-27(2x-1)=0

Então: x=1 \ $ou$ \ x^2-56x+28=0

\Delta=3136-112=3024=2^4.3^2.21

x=\dfrac{56\pm 12\sqrt{21}}{2}\Longrightarrow x=28+6\sqrt{21} \ $ou$ \ x=28-6\sqrt{21}

Perceba porém que 0<28-6\sqrt{21}<1. Então esse resultado não convém, pois não obedece às condições do problema. Sendo assim, os valores de x que satisfazem essa equação são 1 \ $e$ \ 28+6\sqrt{2}.

Observações:
_Qualquer erro, por favor, AVISEM!!! ;)
Mathmatematica
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 25
Registrado em: Sex Jun 04, 2010 23:53
Formação Escolar: ENSINO MÉDIO
Área/Curso: Bacharelado
Andamento: cursando


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.