• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Equação Algébrica

Equação Algébrica

Mensagempor Carolziiinhaaah » Qui Jun 03, 2010 17:30

Determinar a e b, de modo que a equação x^4 + 3x^3 + (3a - b)x^2 + (a-b-3)x + (2a+b+6)=0 admita duas e somente duas raízes nulas.
Avatar do usuário
Carolziiinhaaah
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 77
Registrado em: Sex Mai 28, 2010 14:12
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Equação Algébrica

Mensagempor Mathmatematica » Sáb Jun 05, 2010 04:12

Olá Carol. Vamos resolver essa questão.

Dos dados do enunciado, sabemos que a equação x^4+3x^3+(3a-b)x^2+(a-b-3)x+(2a+b+6)=0 tem duas de suas raízes iguais a zero. Isso significa que quando substituímos x=0 na equação proposta, esta deverá resultar em zero. Também sabemos que somente duas de suas raízes são zero. Se essa informação não nos fosse dada, poderíamos admitir que essa equação teria todas as suas raízes iguais a zero (lembre-se que se um número complexo é raiz de uma equação então o seu conjugado também é raiz dessa equação).

A equação proposta é então semelhante a uma equação do tipo k(x-A)(x-B)(x-C)(x-D)=0, onde A, B, C e D são raízes da equação e A,B,C,D\in\mathbb C. k\in\mathbb R e é o termo que acompanha o termo de maior grau da equação. Da equação proposta no enunciado temos que k=1. Como nós temos duas raízes nulas façamos C=D=0. Teremos então a expressão x^2(x-A)(x-B) que é semelhante à expressão x^4+3x^3+(3a-b)x^2+(a-b-3)x+(2a+b+6). Então:

x^2(x-A)(x-B)\equiv x^4+3x^3+(3a-b)x^2+(a-b-3)x+(2a+b+6)

x^2[x^2-(A+B)x+AB]\equiv x^4+3x^3+(3a-b)x^2+(a-b-3)x+(2a+b+6)

x^4-(A+B)x^3+ABx^2\equiv x^4+3x^3+(3a-b)x^2+(a-b-3)x+(2a+b+6)

Sendo assim teremos:

A+B=-3

AB=3a-b

a-b-3=0

2a+b+6=0

Como só nos interessa saber os valores de a e b (e não das outras raízes), vamos resolver o sistema composto pelas últimas duas equações acima:

a-b-3=0

2a+b+6=0

Somando as equações temos que: 3a+3=0\longrightarrow a=-1\Longrightarrow 2(-1)+b+6=0\longrightarrow b=-4

Logo, para que a equação x^4+3x^3+(3a-b)x^2+(a-b-3)x+(2a+b+6)=0 tenha duas, e somente duas raízes nulas, a e b devem valer, respectivamente, -1 e -4. :-D

Observações:
_Qualquer erro, por favor, AVISEM!!!
Mathmatematica
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 25
Registrado em: Sex Jun 04, 2010 23:53
Formação Escolar: ENSINO MÉDIO
Área/Curso: Bacharelado
Andamento: cursando

Re: Equação Algébrica

Mensagempor Carolziiinhaaah » Seg Jun 14, 2010 14:05

Certinho! Resolução PERFEITA! Parabéns! Muuuuito obrigada ;D
Avatar do usuário
Carolziiinhaaah
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 77
Registrado em: Sex Mai 28, 2010 14:12
Formação Escolar: ENSINO MÉDIO
Andamento: cursando


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.