• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Equação Algébrica

Equação Algébrica

Mensagempor Carolziiinhaaah » Qui Jun 03, 2010 17:30

Determinar a e b, de modo que a equação x^4 + 3x^3 + (3a - b)x^2 + (a-b-3)x + (2a+b+6)=0 admita duas e somente duas raízes nulas.
Avatar do usuário
Carolziiinhaaah
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 77
Registrado em: Sex Mai 28, 2010 14:12
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Equação Algébrica

Mensagempor Mathmatematica » Sáb Jun 05, 2010 04:12

Olá Carol. Vamos resolver essa questão.

Dos dados do enunciado, sabemos que a equação x^4+3x^3+(3a-b)x^2+(a-b-3)x+(2a+b+6)=0 tem duas de suas raízes iguais a zero. Isso significa que quando substituímos x=0 na equação proposta, esta deverá resultar em zero. Também sabemos que somente duas de suas raízes são zero. Se essa informação não nos fosse dada, poderíamos admitir que essa equação teria todas as suas raízes iguais a zero (lembre-se que se um número complexo é raiz de uma equação então o seu conjugado também é raiz dessa equação).

A equação proposta é então semelhante a uma equação do tipo k(x-A)(x-B)(x-C)(x-D)=0, onde A, B, C e D são raízes da equação e A,B,C,D\in\mathbb C. k\in\mathbb R e é o termo que acompanha o termo de maior grau da equação. Da equação proposta no enunciado temos que k=1. Como nós temos duas raízes nulas façamos C=D=0. Teremos então a expressão x^2(x-A)(x-B) que é semelhante à expressão x^4+3x^3+(3a-b)x^2+(a-b-3)x+(2a+b+6). Então:

x^2(x-A)(x-B)\equiv x^4+3x^3+(3a-b)x^2+(a-b-3)x+(2a+b+6)

x^2[x^2-(A+B)x+AB]\equiv x^4+3x^3+(3a-b)x^2+(a-b-3)x+(2a+b+6)

x^4-(A+B)x^3+ABx^2\equiv x^4+3x^3+(3a-b)x^2+(a-b-3)x+(2a+b+6)

Sendo assim teremos:

A+B=-3

AB=3a-b

a-b-3=0

2a+b+6=0

Como só nos interessa saber os valores de a e b (e não das outras raízes), vamos resolver o sistema composto pelas últimas duas equações acima:

a-b-3=0

2a+b+6=0

Somando as equações temos que: 3a+3=0\longrightarrow a=-1\Longrightarrow 2(-1)+b+6=0\longrightarrow b=-4

Logo, para que a equação x^4+3x^3+(3a-b)x^2+(a-b-3)x+(2a+b+6)=0 tenha duas, e somente duas raízes nulas, a e b devem valer, respectivamente, -1 e -4. :-D

Observações:
_Qualquer erro, por favor, AVISEM!!!
Mathmatematica
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 25
Registrado em: Sex Jun 04, 2010 23:53
Formação Escolar: ENSINO MÉDIO
Área/Curso: Bacharelado
Andamento: cursando

Re: Equação Algébrica

Mensagempor Carolziiinhaaah » Seg Jun 14, 2010 14:05

Certinho! Resolução PERFEITA! Parabéns! Muuuuito obrigada ;D
Avatar do usuário
Carolziiinhaaah
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 77
Registrado em: Sex Mai 28, 2010 14:12
Formação Escolar: ENSINO MÉDIO
Andamento: cursando


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: dúvida em uma questão em regra de 3!
Autor: leandro moraes - Qui Jul 01, 2010 12:41

pessoal eu achei como resultado 180 toneladas,entretanto sei que a questão está erra pela lógica e a resposta correta segundo o gabarito é 1.800 toneladas.
me explique onde eu estou pecando na questão. resolva explicando.

78 – ( CEFET – 1993 ) Os desabamentos, em sua maioria, são causados por grande acúmulo de lixo nas encostas dos morros. Se 10 pessoas retiram 135 toneladas de lixo em 9 dias, quantas toneladas serão retiradas por 40 pessoas em 30 dias ?


Assunto: dúvida em uma questão em regra de 3!
Autor: Douglasm - Qui Jul 01, 2010 13:16

Observe o raciocínio:

10 pessoas - 9 dias - 135 toneladas

1 pessoa - 9 dias - 13,5 toneladas

1 pessoa - 1 dia - 1,5 toneladas

40 pessoas - 1 dia - 60 toneladas

40 pessoas - 30 dias - 1800 toneladas


Assunto: dúvida em uma questão em regra de 3!
Autor: leandro moraes - Qui Jul 01, 2010 13:18

pessoal já achei a resposta. o meu erro foi bobo rsrsrrs errei em uma continha de multiplicação, é mole rsrsrsr mas felizmente consegui.


Assunto: dúvida em uma questão em regra de 3!
Autor: leandro moraes - Qui Jul 01, 2010 13:21

leandro moraes escreveu:pessoal já achei a resposta. o meu erro foi bobo rsrsrrs errei em uma continha de multiplicação, é mole rsrsrsr mas felizmente consegui.

valeu meu camarada.