• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Potenciação] raiz de número negativo,sendo tudo ao quadrado

[Potenciação] raiz de número negativo,sendo tudo ao quadrado

Mensagempor Debora Bruna » Sex Jun 26, 2015 23:02

Minha vida foi sempre movida na frase de Sócrates "Só sei que nada sei", quanto mais eu estudo mais percebo que não sei de nada. :-P
Seguinte, sempre resolvi questões horrendas, mas hoje inventei tirar à prova do que estou fazendo e me confundi toda.
Problemas como esse, resolvia assim: (?-3)^2 = (corta o expoente com a raiz) = -3.
Mas sei que um número elevado a n é esse número multiplicado n vezes: (?-3)^2 = (?-3).(?-3)= (?-3.-3) = ?9 = 3. Viram? Deu 3 positivo. Assim eu lhes pergunto, onde foi que eu errei?
Debora Bruna
Novo Usuário
Novo Usuário
 
Mensagens: 8
Registrado em: Seg Dez 15, 2014 17:49
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: [Potenciação] raiz de número negativo,sendo tudo ao quad

Mensagempor DanielFerreira » Sáb Jun 27, 2015 14:30

Olá Débora, boa tarde!

Sua dúvida está relacionada ao estudo do módulo.

Supomos que queiramos encontrar a raiz quadrada de k^2, isto é \sqrt{k^2}. Veja o que acontece...

Resolução:

\\ \sqrt{k^2} = |k| \\\\ |k| = \begin{cases}k \;\; \text{se} \;\; k \geq 0 \\ - k \;\; \text{se} \;\; k < 0 \end{cases}


Outro exemplo:

\\ (\sqrt{- 4})^2= \\\\ \sqrt{(- 4)^2} = \\\\ \sqrt{16} = \\\\ |4| =

Uma vez que 4 \geq 0, temos que \boxed{|4| = + 4}

Vale ressaltar que não existe raiz quadrada de números negativos, em \mathbb{R}, por isso não podemos cortar a raiz com o expoente!
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado

Re: [Potenciação] raiz de número negativo,sendo tudo ao quad

Mensagempor Debora Bruna » Dom Jun 28, 2015 15:10

Muitíssimo obrigada danjr5 :y: , esse negócio de corta corta de alguns professores nunca dá certo não é msm?, mas enfim, nunca mais errarei!
Debora Bruna
Novo Usuário
Novo Usuário
 
Mensagens: 8
Registrado em: Seg Dez 15, 2014 17:49
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: [Potenciação] raiz de número negativo,sendo tudo ao quad

Mensagempor DanielFerreira » Dom Jun 28, 2015 16:01

Não há de quê e volte sempre!!
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.