• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Frações Algébricas] Como simplifico essa fração?

[Frações Algébricas] Como simplifico essa fração?

Mensagempor Kah » Qua Mar 18, 2015 17:44

Olá! Alguém pode me ajudar, por favor?

Como simplifico essa fração algébrica?

Sei que no numerador tenho uma diferença entre quadrados e no denominador um diferença entre cubos. Fiz assim:

Numerador:

m³ - 1 = (m - 1)(m² + m + 1)

Denominador

m^6 - 1 = (m²)³ - (1)³ = (m² - 1)(m^4 + m² + 1) = [(m + 1)(m - 1)]( m^4 + m² + 1 )

Simplifiquei (m - 1) do numerador com o (m - 1) do denominador, ficando assim:

(m² + m + 1)/ (m + 1)( m^4 + m² + 1 )

Não consigo sair disso :/

O que fiz de errado?
Anexos
Mat.png
Mat.png (3.53 KiB) Exibido 2056 vezes
Kah
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Qua Mar 18, 2015 17:31
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: [Frações Algébricas] Como simplifico essa fração?

Mensagempor Russman » Qua Mar 18, 2015 22:38

Pensei uma forma mais direta.

Se você tomar m^6 -1 = (m^3)^2 - 1^2 = (m^3+1)(m^3-1)

Daí,

\frac{m^3-1}{(m^3+1)(m^3-1)} = \frac{1}{m^3+1}

Mas você não fez errado.

Note que se você dividir \frac{m^2+m+1}{m^4+m^2+1} obterá \frac{1}{m^2-m+1} e, portanto, o resultado será

\frac{1}{(m+1)(m^2-m+1} = \frac{1}{m^3+1}.

Para dividir os polinômios basta observar seus graus. Já que o polinômio do numerador é de grau 2 e do denominador de grau 4 então o quaociente entre eles será um polinômio de grau zero dividido por um de grau 2.

Daí, suponha que existam reais a, b e c tais que

\frac{m^2+m+1}{m^4+m^2+1} = \frac{1}{am^2+bm+c}

Sem dificuldades você concluirá que

am^4 + (a+b) m^3 + (a+b+c)m^2 + m(c+b) + c = 0

de onde a=1, b=-1 e c=1 por igualdade de polinômios.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.