• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Gráfico + circunferência = ?

Gráfico + circunferência = ?

Mensagempor IsadoraLG » Dom Mai 25, 2014 23:07

Olá,

Não estou conseguindo resolver este exercício, e gostaria de saber se há alguma técnica específica para casos em que há circunferências e gráficos.

(UFMG) Na figura, C é o centro da circunferência, M é o ponto médio de CB e DE é perpendicular à AB. Se A= (1,-1) e C=(5,2), então o comprimento de DE é:

Coloquei um anexo da imagem também.
Anexos
Exercício UFMG.png
Exercício UFMG Circunferência
Exercício UFMG.png (7.31 KiB) Exibido 1095 vezes
IsadoraLG
Usuário Ativo
Usuário Ativo
 
Mensagens: 21
Registrado em: Ter Ago 27, 2013 18:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Gestão em Recursos Humanos
Andamento: formado

Re: Gráfico + circunferência = ?

Mensagempor Russman » Seg Mai 26, 2014 17:18

A questão dá tanta informação que é fácil ficar confuso em qual método de solução investir.

Eu faria assim:

Já que definimos um sistema de eixos x e y, podemos mapear essa circunferência definindo a equação que a gera. Você deve saber que a equação de uma circunferência de cento no ponto genérico (x,y) = (a,b) e raio r é

(x-a)^2+(y-b)^2=r^2

Daí, a nossa circunferência de centro (5,2) se escreve como

(x-5)^2+(y-2)^2 = r^2.

Mas, e o raio? Outro ponto foi dado: o ponto A de coordenadas (1,-1). Portanto, deve ser verdade que

(1-5)^2 + (-1-2)^2 = r^2

de onde r=5.

Note que a reta que liga o ponto B ao A é uma contante. Os pontos estão na mesma "altura", com relação ao eixo y. Isto é, as coordenadas de B devem ser (x_B,-1). Com isso, já que B pertence a circunferência, entao

(x_B - 5)^2+(-1-2)^2=25
(x_B-5)^2 = 16

de onde x_B = 1 ou x_B = 9. Mas se x_B = 1 então A=B que não reflete a nossa situação. Portanto, B=(9,-1).

Agora, se M é o ponto médio de CB, não é difícil de mostrar que M = \left ( \frac{x_B+x_C}{2},\frac{y_B+y_C}{2} \right ).
Assim, M = \left ( \frac{9+5}{2},\frac{-1-1}{2} \right ) = \left ( 7,-1 \right ).

Veja que os pontos D e E são pontos que pertencem a circunferência e, ao mesmo tempo, tem ambos coordenada x igual a coordenada x de M!
Portanto, a única forma de D= (7,y_D) e E=(7,y_E) se ajustarem a geometria a qual lhes é sugerida é o cumprimento de

(7-5)^2 + (y_D - 2)^2 = 25
(7-5)^2 + (y_E - 2)^2 = 25

Certo?

Resolvendo, genericamente, a equação

4 + (y - 2)^2 = 25

você obtem y = 2 \pm \sqrt{21}. Como 2 + \sqrt{21} > 2 - \sqrt{21} e o ponto D está "mais alto" que E, então E =(7,2+ \sqrt{21}) e D =(7,2-\sqrt{21}).

Finalmente, a distância esntre eles será, já que compartilham a mesma coordenada x,

d_{ED} = 2+ \sqrt{21} - (2 - \sqrt{21}) = 2 \sqrt{21}
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Proporcionalidade
Autor: silvia fillet - Qui Out 13, 2011 22:46

Divida o numero 35 em partes diretamente proporcionais a 4, 10 e 14. Em seguida divida o mesmo numero em partes proporcionais a 6, 15 e 21. explique por que os resultados sao iguais.


Assunto: Proporcionalidade
Autor: silvia fillet - Sáb Out 15, 2011 10:25

POR GENTILEZA PODEM VERIFICAR SE O MEU RACIOCINIO ESTÁ CERTO?

P1 = K.4 SUBSTITUINDO K POR 1,25 P1= 5
P2 = K.10 SUBSTITUINDO K POR 1,25 P2= 12,50
P3 = K.13 SUBSTITUINDO K POR 1,25 P3= 17,50

P1+P2+P3 = 35
K.4+K.10+K.13 = 35
28 K = 35
K= 1,25


P1 = K.6 SUBSTITUINDO K POR 0,835 P1= 5
P2 = K.15 SUBSTITUINDO K POR 0,835 P2 = 12,50
P3 = K.21 SUBSTITUINDO K POR 0,835 P3 = 17,50
K.6+K.15+K.21 = 35
42K = 35
K= 0,833


4/6 =10/15 =14/21 RAZÃO = 2/3

SERÁ QUE ESTÁ CERTO?
ALGUEM PODE ME AJUDAR A EXPLICAR MELHOR?
OBRIGADA
SILVIA


Assunto: Proporcionalidade
Autor: ivanfx - Dom Out 16, 2011 00:37

utilize a definição e não se baseie no exercícios resolvidos da redefor, assim você terá mais clareza, mas acredito que sua conclusão esteja correto, pois o motivo de darem o mesmo resultado é pq a razão é a mesma.


Assunto: Proporcionalidade
Autor: Marcos Roberto - Dom Out 16, 2011 18:24

Silvia:
Acho que o resultado é o mesmo pq as razões dos coeficientes e as razões entre os números são inversamente proporcionais.

Você conseguiu achar o dia em que caiu 15 de novembro de 1889?


Assunto: Proporcionalidade
Autor: deiasp - Dom Out 16, 2011 23:45

Ola pessoal
Tb. estou no redefor
O dia da semana em 15 de novembro de 1889, acredito que foi em uma sexta feira


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 06:23

Bom dia,
Realmente foi uma sexta feira, como fazer os calculos para chegar ?


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 07:18

Para encontrar o dia que caiu 15 de novembro de 1889 você deve em primeiro lugar encontrar a quantidade de anos bissextos que houve entre 1889 à 2011, após isso dá uma verificada no ano 1900, ele não é bissexto, pois a regra diz que ano que é múltiplo de 100 e não é múltiplo de 400 não é bissexto.
Depois calcule quantos dias dão de 1889 até 2011, basta pegar a quantidade de anos e multiplicar por 365 + 1 dia a cada ano bissexto (esse resultado você calculou quando encontrou a quantidade de anos bissextos)
Pegue o resultado e divida por 7 e vai obter o resto.
obtendo o resto e partindo da data que pegou como referência conte a quantidade do resto para trás da semana.


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 07:40

Bom dia,
Será que é assim:
2011 a 1889 são 121 anos sendo , 30 anos bissextos e 91 anos normais então temos:
30x366 = 10.980 dias
91x365 = 33.215 dias
incluindo 15/11/1889 - 31/12/1889 47 dias
33215+10980+47 = 44242 dias

44242:7 = 6320 + resto 2

è assim, nâo sei mais sair disso.


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 10:24

que tal descontar 1 dia do seu resultado, pois 1900 não é bissexto, ai seria 44241 e quando fizer a divisão o resto será 1
como etá pegando base 1/01/2011, se reparar bem 01/01/2011 sempre cai no mesmo dia que 15/01/2011, sendo assim se 01/01/2011 caiu em um sábado volte 1 dia para trás, ou seja, você está no sábado e voltando 1 dia voltará para sexta.então 15/11/1889 cairá em uma sexta


Assunto: Proporcionalidade
Autor: Kiwamen2903 - Seg Out 17, 2011 19:43

Boa noite, sou novo por aqui, espero poder aprender e ajudar quando possível! A minha resposta ficou assim:


De 1889 até 2001 temos 29 anos bissextos a começar por 1892 (primeiro múltiplo de 4 após 1889) e terminar por 2008 (último múltiplo de 4 antes de 2011). Vale lembrar que o ano 1900 não é bissexto, uma vez que é múltiplo de 100 mas não é múltiplo de 400.

De um ano normal para outro, se considerarmos a mesma data, eles caem em dias consecutivos da semana. Por exemplo 01/01/2011 – sábado, e 01/01/2010 – sexta.

De um ano bissexto para outro, se considerarmos a mesma data, um cai dois dias da semana depois do outro. Por exemplo 01/01/2008 (ano bissexto) – Terça – feira, e 01/01/09 – Quinta-feira.

Sendo assim, se contarmos um dia da semana de diferença para cada um dos 01/01 dos 122 anos que separam 1889 e 2011 mais os 29 dias a mais referentes aos anos bissextos entre 1889 e 2011, concluímos que são 151 dias da semana de diferença, o que na realidade nos trás: 151:7= 21x7+4, isto é, são 4 dias da semana de diferença. Logo, como 15/11/2011 cairá em uma terça-feira, 15/11/1889 caiu em uma sexta-feira.