• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Radiciação e potenciação - Qual o próximo passo?

Radiciação e potenciação - Qual o próximo passo?

Mensagempor IsadoraLG » Qua Mai 21, 2014 01:17

Só consegui fazer o exercício até determinada parte, mas na resolução há continuidade, o problema é que não entendi essa tal continuação:

(UFRGS) Simplificando \sqrt[]{\frac{a}{\sqrt[3]{a}}} encontramos:

resposta correta: B) \sqrt[3]{a}

O que consegui fazer: \frac{\sqrt[]{a}}{\sqrt[]{\sqrt[3]{a}}}=\frac{\sqrt[]{a}}{\sqrt[6]{a}} = \frac{\sqrt[]{a}}{\sqrt[6]{a}}  .  \frac{\sqrt[6]{{a}^{5}}}{\sqrt[6]{{a}^{5}}}=  \frac{\sqrt[]{a}.\sqrt[6]{{a}^{5}}}{a}=   \frac{{a}^{\frac{1}{2}+\frac{5}{6}}}{a}=   \frac{{a}^{\frac{8}{6}}}{a}=   \frac{{a}^{\frac{4}{3}}}{a}=   {a}^{\frac{1}{3}}=   \sqrt[3]{a}
IsadoraLG
Usuário Ativo
Usuário Ativo
 
Mensagens: 21
Registrado em: Ter Ago 27, 2013 18:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Gestão em Recursos Humanos
Andamento: formado

Re: Radiciação e potenciação - Qual o próximo passo?

Mensagempor Russman » Qua Mai 21, 2014 19:55

É só usar a seguinte propriedade para Reais quaisquer x, y e a \neq 0:

\frac{a^x}{a^y} = a^{(x-y)}

De fato,

\frac{4}{3} - 1 = \frac{1}{3}

e, portanto,

\frac{a^{\frac{4}{3}}}{a} =  a^{\frac{1}{3}} = \sqrt[3]{a}
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: Radiciação e potenciação - Qual o próximo passo?

Mensagempor IsadoraLG » Qua Mai 21, 2014 21:36

Puxa vida, era uma propriedade simples! =p

Valeu!

Consegui!

E usei o esquema dos números primos para fazer a conta com os expoentes em fração, que você explicou, ao invés do chatinho mmc, bem melhor.
IsadoraLG
Usuário Ativo
Usuário Ativo
 
Mensagens: 21
Registrado em: Ter Ago 27, 2013 18:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Gestão em Recursos Humanos
Andamento: formado


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.