• Anúncio Global
    Respostas
    Exibições
    Última mensagem

MMC com letras

MMC com letras

Mensagempor IsadoraLG » Qua Mai 21, 2014 00:24

O chato é que eu já fiz isso algum dia, mas não consigo mais lembrar como fazer o MMC com letras!

Como no caso deste exercício:

(UFRGS) Sendo n > 1, a expressão \frac{1}{\sqrt[]{n}} - \frac{1}{\sqrt[]{n}+1} é equivalente a:
A) \frac{n-\sqrt[]{n}}{n(n-1)}

B) \frac{\sqrt[]{n}-1}{n(n-1)}

C) \frac{\sqrt[]{n}}{n+\sqrt[]{n}}

D) \frac{\sqrt[]{n}}{n}

E) \frac{\sqrt[]{n}-n}{n+1}

Resposta: A.
IsadoraLG
Usuário Ativo
Usuário Ativo
 
Mensagens: 21
Registrado em: Ter Ago 27, 2013 18:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Gestão em Recursos Humanos
Andamento: formado

Re: MMC com letras

Mensagempor Russman » Qua Mai 21, 2014 19:40

O MMC entre \sqrt{n} e \sqrt{n} + 1 é \sqrt{n}(\sqrt{n} + 1).

Os estudantes de matemática, em geral, apresentam uma certa dificuldade quanto a efetuar somas de frações em virtude de, além de (na maioria dos casos) não compreenderem muito bem o conceito envolvido no MMC, ter preguiça de calculá-lo. De fato, é um cálculo extenso. Eu mesmo nunca o faço para efetuar frações. Ao invés de tomar o denominador da soma das frações como o MMC dos denominadores das parcelas o tomo, simplesmente, pelo produto dos denominadores. Não há absolutamente perda nenhuma de generalidade nesse método.

De fato, para quaisquer Reais a,b,c \neq 0 e d \neq 0 é verdade que

\frac{a}{c} + \frac{b}{d} = \frac{ad + bc}{cd}.

Tente resolver assim, se preferir. Neste caso específico não tem graça pois o MMC coincide com o produto dos denominadores. Isto acontecerá sempre que os denominadores forem primos entre si.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: MMC com letras

Mensagempor IsadoraLG » Qua Mai 21, 2014 21:28

Obrigada, sua explicação é muito clara!

Porém, enfrento mais dificuldades...

Continuei a fazer o exercício:

\frac{\sqrt[]{n}+1-\sqrt[]{n}}{\sqrt[]{n}(\sqrt[]{n}+1)}=   \frac{1}{\sqrt[]{n}(\sqrt[]{n}+1)}

A partir desse ponto, não entendi a continuação (tentei fazer, não consegui, vi a resolução, mas gostaria de entender):

=   \frac{1}{n+\sqrt[]{n}}

Depois desse passo, ocorre a racionalização, e estou tendo muita dificuldade para realizar as operações com as letras, sempre penso em algo diferente do resultado dado:

=   \frac{1}{n+\sqrt[]{n}}  .  \frac{n-\sqrt[]{n}}{n-\sqrt[]{n}}=   \frac{n-\sqrt[]{n}}{{n}^{2}-n}=   \frac{n-\sqrt[]{n}}{n(n-1)}
IsadoraLG
Usuário Ativo
Usuário Ativo
 
Mensagens: 21
Registrado em: Ter Ago 27, 2013 18:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Gestão em Recursos Humanos
Andamento: formado


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}