• Anúncio Global
    Respostas
    Exibições
    Última mensagem

MMC com letras

MMC com letras

Mensagempor IsadoraLG » Qua Mai 21, 2014 00:24

O chato é que eu já fiz isso algum dia, mas não consigo mais lembrar como fazer o MMC com letras!

Como no caso deste exercício:

(UFRGS) Sendo n > 1, a expressão \frac{1}{\sqrt[]{n}} - \frac{1}{\sqrt[]{n}+1} é equivalente a:
A) \frac{n-\sqrt[]{n}}{n(n-1)}

B) \frac{\sqrt[]{n}-1}{n(n-1)}

C) \frac{\sqrt[]{n}}{n+\sqrt[]{n}}

D) \frac{\sqrt[]{n}}{n}

E) \frac{\sqrt[]{n}-n}{n+1}

Resposta: A.
IsadoraLG
Usuário Ativo
Usuário Ativo
 
Mensagens: 21
Registrado em: Ter Ago 27, 2013 18:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Gestão em Recursos Humanos
Andamento: formado

Re: MMC com letras

Mensagempor Russman » Qua Mai 21, 2014 19:40

O MMC entre \sqrt{n} e \sqrt{n} + 1 é \sqrt{n}(\sqrt{n} + 1).

Os estudantes de matemática, em geral, apresentam uma certa dificuldade quanto a efetuar somas de frações em virtude de, além de (na maioria dos casos) não compreenderem muito bem o conceito envolvido no MMC, ter preguiça de calculá-lo. De fato, é um cálculo extenso. Eu mesmo nunca o faço para efetuar frações. Ao invés de tomar o denominador da soma das frações como o MMC dos denominadores das parcelas o tomo, simplesmente, pelo produto dos denominadores. Não há absolutamente perda nenhuma de generalidade nesse método.

De fato, para quaisquer Reais a,b,c \neq 0 e d \neq 0 é verdade que

\frac{a}{c} + \frac{b}{d} = \frac{ad + bc}{cd}.

Tente resolver assim, se preferir. Neste caso específico não tem graça pois o MMC coincide com o produto dos denominadores. Isto acontecerá sempre que os denominadores forem primos entre si.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: MMC com letras

Mensagempor IsadoraLG » Qua Mai 21, 2014 21:28

Obrigada, sua explicação é muito clara!

Porém, enfrento mais dificuldades...

Continuei a fazer o exercício:

\frac{\sqrt[]{n}+1-\sqrt[]{n}}{\sqrt[]{n}(\sqrt[]{n}+1)}=   \frac{1}{\sqrt[]{n}(\sqrt[]{n}+1)}

A partir desse ponto, não entendi a continuação (tentei fazer, não consegui, vi a resolução, mas gostaria de entender):

=   \frac{1}{n+\sqrt[]{n}}

Depois desse passo, ocorre a racionalização, e estou tendo muita dificuldade para realizar as operações com as letras, sempre penso em algo diferente do resultado dado:

=   \frac{1}{n+\sqrt[]{n}}  .  \frac{n-\sqrt[]{n}}{n-\sqrt[]{n}}=   \frac{n-\sqrt[]{n}}{{n}^{2}-n}=   \frac{n-\sqrt[]{n}}{n(n-1)}
IsadoraLG
Usuário Ativo
Usuário Ativo
 
Mensagens: 21
Registrado em: Ter Ago 27, 2013 18:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Gestão em Recursos Humanos
Andamento: formado


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.