• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Somatório

Somatório

Mensagempor alienante » Qua Mai 07, 2014 14:59

SejamX=(2,6,7,9), Y=(1,4,5,11) Calcule: \sum_{i=1}^{3}\sum_{j=2}^{4}({X}_{i}+2)
alienante
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 43
Registrado em: Seg Nov 25, 2013 19:18
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: Somatório

Mensagempor Russman » Qua Mai 07, 2014 19:14

Frente ao somatório em j o termo (X_i + 2) é constante. Assim,

\sum_{j=2}^{4} (X_i + 2) = (4-2+1) ( X_i + 2) = 3(X_i + 2).

Daí, a soma em i fica

\sum_{i=1}^{3} 3 (X_i + 2) = 3 \sum_{i=1}^{3} X_i + 3 \sum_{i=1}^{3} 2 = 3 (X_1 + X_2 + X_3) + 3 .2.(3-1+1)=
= 3(2+6+7) + 3.6 =  3 . 15 + 18 = 45 + 18 =63

(:
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.