• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Indução matemática

Indução matemática

Mensagempor marinalcd » Dom Fev 23, 2014 16:48

Estou com dúvida nesse exercício .
Por meio de Indução Matemática, mostrar que {2}^{n-1}\leq n!, \forall n \in N.
Provei para n=1.
Na hora de provar para n+1, cheguei em {2}^{n}\leq (n+1)!, mas não consigo sair daí, não consigo concluir o problema.
marinalcd
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 143
Registrado em: Sex Abr 27, 2012 21:25
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia
Andamento: cursando

Re: Indução matemática

Mensagempor young_jedi » Dom Fev 23, 2014 18:59

na verdade você já chegou na solução
sua solução foi

2^m\leq(m+1)!

m+1=n

m=n-1

portanto

2^{n-1}\leq n!
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: Indução matemática

Mensagempor marinalcd » Dom Fev 23, 2014 20:48

Acho que não me expressei bem.
Eu cheguei na solução, mas preciso provar, justificar o
porque de 2^{n-1}\leq n!.
E, bom, eu sei que isso é verdade, até porque se atribuirmos quaisquer valores
para n, vemos que a desigualdade é verdadeira, mas não sei escrever isso.
Não estou conseguindo escrever de forma matemática. Pois não posso usar o fato
de atribuir valores como prova.
marinalcd
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 143
Registrado em: Sex Abr 27, 2012 21:25
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia
Andamento: cursando

Re: Indução matemática

Mensagempor young_jedi » Dom Fev 23, 2014 22:54

temos que

2^{2-1}=2!

podemos dizer então que

2^{n-1}=n!

para n=2

a partir dai

2.2^{n-1}=2.n!

2^n=2.n!

se n\geq 1 então

2^n\leq (n+1).n!

2^{n}\leq (n+1)!

ou seja para n\geq 2
a expressão 2^{n}\leq (n+1)! é verdadeira para qualquer n inteiro
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.