• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Trinômio] Desenvolvimento

[Trinômio] Desenvolvimento

Mensagempor silviopuc » Dom Dez 29, 2013 00:55

Preciso de ajuda para o exercício a seguir. Não soube trabalhar com um trinômio...


A soma dos coeficientes do desenvolvimento de {\left(2x+y-3z \right)}^{10} é necessariamente:

a) um número maior que {2}^{10}
b) um número entre {2}^{5} e {2}^{10}
c) igual a 1
d) igual a zero
e) um número negativo.
silviopuc
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Ter Jan 15, 2013 12:41
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: [Trinômio] Desenvolvimento

Mensagempor e8group » Dom Dez 29, 2013 16:36

Começamos com a soma de dois números reais x,y .Esta soma a uma potência n \in \mathbb{N} se escreve como \sum_{ k=0}^n \binom{n}{k} x^{n-k}y^k (Teorema Binomial ) e igualdade x=y = 1 nos dá a soma dos coeficientes acima (1+1)^n =  2^n =\sum_{ k=0}^n \binom{n}{k} . E quando temos m números reais x_1,\hdots , x_m ,o teorema multinomial nos garanti uma forma de expandir ( \sum_{k=1}^m x_k)^n como se vê lá ...

Mas como o objetivo é obter a soma dos coeficientes de (x_1 + \hdots + x_m)^n na sua forma expandida . Fazendo todos x_i iguais a 1 , teremos (\sum_{k=1}^m 1)^n =  m^n que és a soma requerida .

Justificativa :

Segue-se que

(x_1 + \hdots + x_m)^n se escreve sob a soma das parcelas que se exprimem por \lambda_i   x_1^{k_1}  \cdot x_2^{k_2}  \cdots   x_m^{k_m}  = \lambda_i  \prod_{j=1}^m  x_j^{k_j} ; k_j \in \{0,1,2,\hdots,m\} ,esta afirmação é assegurada pelo teorema multinomial , ou então notando a fórmula de recorrência :

I_m^n = \sum_{k=0}^{n}  \binom{n}{k} x_m^{m-k} \cdot I_{m-1}^k .Em que a notação I_p designa a soma dos primeiros p termos da lista x_1,x_2,\hdots , x_m ,i.e., I_p = x_1+\hdots + x_p .


E assim concluindo ,quando fizermos todos os x_i iguais 1 teremos a soma dos coeficientes \lambda_i .

Agora tente concluir.
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: [Trinômio] Desenvolvimento

Mensagempor silviopuc » Seg Dez 30, 2013 15:28

Santhiago eu não consegui avançar, pois eu não entendi. Porém, quero entender tudo o que você explicitou, peço que me corrija quando eu falhar e me ajude a avançar (por favor). O teorema binomial eu entendi. Sei que a soma dos coeficientes de um binômio \left(a + b \right)^n é dada por {2}^{n} (isso é bem observado no triângulo de Pascal, certo?). Mas o teorema multinomial eu não compreendi. Procurei alguma informação na internet, mas não consegui entender.
silviopuc
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Ter Jan 15, 2013 12:41
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: [Trinômio] Desenvolvimento

Mensagempor e8group » Seg Dez 30, 2013 18:28

Olá ,só quis deixar claro que é possível expandir (x_1 + ... + x_m)^n (*) pelo teorema multinomial .Mas isto não importa ,só queremos a soma dos coeficiente de (*) na sua forma expandida .

Vamos supor que não conhecemos o teorema binomial e multinomial e queremos determinar a soma dos coeficientes de(x_1+x_2) ^n e (x_1+x_2 + \hdots + x_m)^n nas suas formas expandida . Segue ,

(x_1 + x_2)^n = x_1(x_1+x_2)^{n-1} + x_2 (x_1 + x_2)^{n-1}   = x_1^2(x_1 + x_2)^{n-2}  + x_1x_2(x_1 + x_2)^{n-2}   +   x_2x_1(x_1+x_2)^{n-2} +x_2^2 (x_1+x_2)^{n-2}  +   = \hdots

E fazendo o mesmo processo acima sucessivas vezes esperamos que (x_1 + x_2)^n se exprima como \sum_k  \lambda_k x_1^{q_k^1} x_2^{q_k^2} com q_k^1 , q_k^2 = 0,1,2,\hdots , n e \lambda_k números reais . Quando fizemos x_1 = x_2 = 1 teremos a soma dos coeficientes (1+1)^n  = \sum_k \lambda_k .

silviopuc escreveu: teorema binomial eu entendi. Sei que a soma dos coeficientes de um binômio é dada por (isso é bem observado no triângulo de Pascal, certo?)


Você estar certo .

Continuando ....

E forma análoga , podemos esperar que (x_1 + \hdots + x_m)^n se escreva como

\sum_k \lambda_k  x_1^{q_k^1} x_2^{q_k^2} \cdots x_m^{q_k^m} (q_k^j  = 0,1,2,...,n ) e novamente se fizermos x_1 =x_2 = \hdots = x_m =  1 teremos a soma dos coeficientes que és

(1+1+1 + ...+1)^n = m^n . No se exercício tente identificar o termo geral da soma . Tente concluir .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}