• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Radiciação

Radiciação

Mensagempor thadeu » Qua Nov 18, 2009 16:32

Um aluno resolvendo uma questão de múltipla escolha chegou ao seguinte resultado \sqrt[4]{49+20\sqrt{6}}, no entanto as opções estavam em números decimais e pedia-se a mais próxima do valor encontrado para resultado, e, assim sendo, procurou simplificar esse resultado, a fim de melhor estimar a resposta. Percebendo que o radicando da raiz de índice 4 é a quarta potência de uma soma de dois radicais simples, concluiu, com maior facilidade, que a opção para a resposta foi:

a) 3
b) 3,05
c) 3,15
d) 3,25
e) 3,35
thadeu
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 69
Registrado em: Seg Out 19, 2009 14:05
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: formado

Re: Radiciação

Mensagempor Elcioschin » Qua Nov 18, 2009 18:01

Primeiramente vamos calcular V(49 + 20*V6) = V(49 + V2400) = Vx + Vy

A = 49, B = 2400 ----> x = [A + V(A² - B)]/2 ----> x = (49 + V(49² - 2400)]/2 ----> x = (49 + 1)/2 ----> x = 25

De modo similar ----> y = [A - V(A² - B)]/2 ----> y = (49 - V(49² - 2400)]/2 ----> y = (49 - 1)/2 ----> y = 24

Logo ----> V(49 + 20*V6) = V25 + V24 ----> V(49 + 20*V6) = 5 + V24

Temos agora que extrair a raiz quadrada des último valor (para obter a raiz quarta), usando o mesmo método:

V(5 + V24) ----> A = 5, B = 24 ----> x = (5 + 1)/2 ----> x = 3 ----> y = 2

Finalmente ----> V(49 + 20*V6) = V3 + V2 ----> V(49 + 20*V6) ~= 1,732 + 1,416 -----> V(49 + 20*V6) ~= 3,146 ----> C
Elcioschin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 624
Registrado em: Sáb Ago 01, 2009 10:49
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: formado


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.