• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Ajuda!

Ajuda!

Mensagempor barbara-rabello » Seg Ago 05, 2013 19:11

Prove que para quaisquer conjuntos A e B temos A \subset B se, e somente se, para qualquer conjunto C vale (A \cup C) \cap (B \cup C) = A \cup C.

Estou com dificuldade nesta questão, posso tentar fazer por Indução? Ou talvez por Absurdo?
Valeu!
barbara-rabello
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 49
Registrado em: Sex Mar 02, 2012 16:52
Formação Escolar: GRADUAÇÃO
Área/Curso: matemática
Andamento: cursando

Re: Ajuda!

Mensagempor e8group » Seg Ago 05, 2013 22:45

Ainda não estudei teoria dos conjuntos como gostaria ,portanto talvez o que postarei apresentará erros .

Suponha C\neq \varnothing.Vamos mostar que se A \subset B ,então :(B\cup C)\cap(A\cup C) = A\cup C .

Dado , x em (B\cup C)\cap(A\cup C) ,segue-se que


x\in B\cup C e x\in A\cup C sse


(x \in B ou x\in C ) e (x \in A ou x\in C ) .

Desde que A \subset B ,temos que x \in A e x\in B sse x\in A\cap B sse x\in A . Daí resulta ,

(x \in B ou x\in C ) e (x \in A ou x\in C ) sse

x\in A ou x\in C o que mostra

(B\cup C)\cap(A\cup C) = A\cup C .

Reciprocamente, seja (B\cup C)\cap(A\cup C) = A\cup C . Dado , x \in (B\cup C)\cap(A\cup C) .Temos :

(x \in B ou x\in C ) e (x \in A ou x\in C ).

Por outro lado :

x \in A\cup C sse x \in A ou x\in C .

Logo , obtemos A \cap B = A e portanto A\subset B .

O caso C = \varnothing é obvio .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Ajuda!

Mensagempor barbara-rabello » Sex Ago 09, 2013 15:14

Obrigada pela ajuda! Vou tentar refazer a questão seguindo a sua lógica.

Uma dúvida, quando você continuou a explicação a partir do reciprocamente, essa parte é para o O casoC = \varnothing?
Pois achei meio estranha, se for.

Valeu!
barbara-rabello
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 49
Registrado em: Sex Mar 02, 2012 16:52
Formação Escolar: GRADUAÇÃO
Área/Curso: matemática
Andamento: cursando

Re: Ajuda!

Mensagempor barbara-rabello » Sex Ago 09, 2013 15:25

Desculpa a pergunta, mas o que significa sse ?
barbara-rabello
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 49
Registrado em: Sex Mar 02, 2012 16:52
Formação Escolar: GRADUAÇÃO
Área/Curso: matemática
Andamento: cursando

Re: Ajuda!

Mensagempor e8group » Sex Ago 09, 2013 22:00

barbara-rabello escreveu:Obrigada pela ajuda! Vou tentar refazer a questão seguindo a sua lógica.

Uma dúvida, quando você continuou a explicação a partir do reciprocamente, essa parte é para o O casoC = \varnothing?
Pois achei meio estranha, se for.

Valeu!


Não há de quê .A resolução a partir do reciprocamente não é para o caso C = \varnothing . Mas claramente quando C= \varnothing o resultado que foi provado (caso não contenha erros )acima também vale para este caso. Pois , A\subset B  \iff A \cap B = (A\cup \varnothing) \cap (B\cup \varnothing) = A\cup \varnothing = A .

barbara-rabello escreveu:Desculpa a pergunta, mas o que significa sse ?


" Se e somente se " ou " se e só se " (abreviadamente , sse )
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Ajuda!

Mensagempor barbara-rabello » Sex Ago 09, 2013 22:13

Muito obrigada mesmo pela ajuda!

Consegui entender sua lógica. Bem que eu achei que estava estranho se fosse para o segundo caso.

Mas uma vez, obrigada!
barbara-rabello
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 49
Registrado em: Sex Mar 02, 2012 16:52
Formação Escolar: GRADUAÇÃO
Área/Curso: matemática
Andamento: cursando


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D