• Anúncio Global
    Respostas
    Exibições
    Última mensagem

QUESTÃO DE TOPOLOGIA

QUESTÃO DE TOPOLOGIA

Mensagempor marciosouza » Dom Abr 14, 2013 17:28

GOSTARIA DE ALGUMAS DICAS PARA AS SEGUINTES QUESTÕES!
----------------------------------------------------------------------------------------------------

QUESTÃO 1) Considere sobre M=R-{-1,1} a métrica induzida pela usual de R. Mostre que a bola fechada B[0,1] é um subconjunto aberto do espaço M.

Resolução:

Denominando A, o subconjunto aberto. Devemos mostrar que a bola fechada B[0,1], que denominamos A, é um subconjunto aberto do espaço M. Isso implica em mostrar que int(A)?M, e que Fr(A)?M.

Vejamos:

1º) int(A)?M

Por definição int(A)=(0,1), logo, tomando um ponto p?A, logo










-------------------------------------------------------------------------------------------------------------------
Se x0 ? M então int{y?M / d(y,x_0)?1}={y?M / d(y,x_0) <1}

Verdadeiro!
(FALTA JUSTIFICAR)


----------------------------------------------------------------------------------------------------------------------------------------------

7) Seja (M,d) um espaço métrico e A?M um conjunto finito. Seja
B={x?M | d(x,y)?1,para algum y?A}
Mostre que B é fechado.



--------------------------------------------------------------------------------------------------------------

Seja {x_n }_(n?N) uma sequência de números reais, limitada e tal que x_p?x_m.?p?m. Mostre que o conjunto formado pelos elementos da sequência {x_1,x_2,x_3,…} tem um ponto de acumulação.
marciosouza
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Ter Set 20, 2011 16:25
Formação Escolar: ENSINO MÉDIO
Área/Curso: licenciatura em matemática
Andamento: cursando

Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}