• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Soma de duas expressões

Soma de duas expressões

Mensagempor eliky » Ter Fev 26, 2013 23:49

Não entendi porque:

2at + a\Delta t = 2at\Delta t

Obrigado desde já!
eliky
Usuário Ativo
Usuário Ativo
 
Mensagens: 14
Registrado em: Sáb Dez 29, 2012 01:01
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Soma de duas expressões

Mensagempor Russman » Qua Fev 27, 2013 01:08

Tem certeza que digitou certo a expressão? De onde ela vem? Pois a soma, a princípio, não faz sentido.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: Soma de duas expressões

Mensagempor eliky » Qua Fev 27, 2013 01:34

A soma destas expressões vêm da cinemática, mas o processo só será algébrico:

Sf= a{t}^{2} + 2at + a\Delta t + a\Delta {t}^{2} + bt + b\Delta t + c

Si = a{t}^{2} + bt + c

\Delta s = ?

Resposta:

\Delta s = 2at\Delta t + a\Delta {t}^{2} + b\Delta t

Desculpe não ter colocado anteriormente, e obrigado pela resposta! : D
eliky
Usuário Ativo
Usuário Ativo
 
Mensagens: 14
Registrado em: Sáb Dez 29, 2012 01:01
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Soma de duas expressões

Mensagempor Russman » Qua Fev 27, 2013 01:41

O cálculo da variação está correto. Não entendi sua dúvida, se é que ainda a tenha.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: Soma de duas expressões

Mensagempor eliky » Qua Fev 27, 2013 01:48

Não entendi como surgiu o 2at\Delta t
eliky
Usuário Ativo
Usuário Ativo
 
Mensagens: 14
Registrado em: Sáb Dez 29, 2012 01:01
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Soma de duas expressões

Mensagempor Russman » Qua Fev 27, 2013 03:20

A função posição do tempo me parece ser S(t) = at^2+bt+c. Certo?

Você quer calcular a variação de posição entre os instantes t e t + \Delta t. Para isto basta tomar

\Delta S(t) = S(t+ \Delta t) - S(t).

Como S(t) = at^2+bt+c, então

S(t + \Delta t) = a( t + \Delta t)^2 + b(t + \Delta t) + c = at^2 + 2at \Delta t + a (\Delta t)^2 + bt + b \Delta t + c,

de forma que

\Delta S(t) = S(t+ \Delta t) - S(t) = at^2 + 2at \Delta t + a (\Delta t)^2 + bt + b \Delta t + c - at^2 -bt - c = 2at \Delta t + a(\Delta t)^2 + b \Delta t.

Acredito que você tenha se confundido no desenvolvimento de S(t+ \Delta t), que você chamou de Sf.

Está claro?
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: Soma de duas expressões

Mensagempor eliky » Qua Fev 27, 2013 03:29

Claríssimo , muito obrigado!!!
eliky
Usuário Ativo
Usuário Ativo
 
Mensagens: 14
Registrado em: Sáb Dez 29, 2012 01:01
Formação Escolar: ENSINO MÉDIO
Andamento: formado


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.