por eliky » Ter Fev 26, 2013 23:49
Não entendi porque:

Obrigado desde já!
-
eliky
- Usuário Ativo

-
- Mensagens: 14
- Registrado em: Sáb Dez 29, 2012 01:01
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
por Russman » Qua Fev 27, 2013 01:08
Tem certeza que digitou certo a expressão? De onde ela vem? Pois a soma, a princípio, não faz sentido.
"Ad astra per aspera."
-
Russman
- Colaborador Voluntário

-
- Mensagens: 1183
- Registrado em: Sex Abr 20, 2012 22:06
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Física
- Andamento: formado
por eliky » Qua Fev 27, 2013 01:34
A soma destas expressões vêm da cinemática, mas o processo só será algébrico:



Resposta:

Desculpe não ter colocado anteriormente, e obrigado pela resposta! : D
-
eliky
- Usuário Ativo

-
- Mensagens: 14
- Registrado em: Sáb Dez 29, 2012 01:01
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
por Russman » Qua Fev 27, 2013 01:41
O cálculo da variação está correto. Não entendi sua dúvida, se é que ainda a tenha.
"Ad astra per aspera."
-
Russman
- Colaborador Voluntário

-
- Mensagens: 1183
- Registrado em: Sex Abr 20, 2012 22:06
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Física
- Andamento: formado
por eliky » Qua Fev 27, 2013 01:48
Não entendi como surgiu o

-
eliky
- Usuário Ativo

-
- Mensagens: 14
- Registrado em: Sáb Dez 29, 2012 01:01
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
por Russman » Qua Fev 27, 2013 03:20
A função posição do tempo me parece ser

. Certo?
Você quer calcular a variação de posição entre os instantes

e

. Para isto basta tomar

.
Como

, então

,
de forma que

.
Acredito que você tenha se confundido no desenvolvimento de

, que você chamou de

.
Está claro?
"Ad astra per aspera."
-
Russman
- Colaborador Voluntário

-
- Mensagens: 1183
- Registrado em: Sex Abr 20, 2012 22:06
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Física
- Andamento: formado
por eliky » Qua Fev 27, 2013 03:29
Claríssimo , muito obrigado!!!
-
eliky
- Usuário Ativo

-
- Mensagens: 14
- Registrado em: Sáb Dez 29, 2012 01:01
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
Voltar para Álgebra Elementar
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Integral da soma/Soma das Integrais.
por Sobreira » Ter Abr 30, 2013 17:41
- 0 Respostas
- 2011 Exibições
- Última mensagem por Sobreira

Ter Abr 30, 2013 17:41
Cálculo: Limites, Derivadas e Integrais
-
- Expressoes
por Biinha » Ter Fev 19, 2013 16:55
- 4 Respostas
- 2304 Exibições
- Última mensagem por Biinha

Sex Fev 22, 2013 11:41
Conjuntos
-
- expressoes
por Bernardo Silva » Sáb Nov 19, 2016 16:40
- 1 Respostas
- 1553 Exibições
- Última mensagem por Jadiel Carlos

Seg Nov 21, 2016 11:54
Cálculo: Limites, Derivadas e Integrais
-
- [expressões] ajuda
por kaic » Seg Abr 07, 2008 23:48
- 5 Respostas
- 3784 Exibições
- Última mensagem por admin

Ter Abr 08, 2008 05:04
Álgebra Elementar
-
- [expressões] problema
por Cleyson007 » Ter Jul 01, 2008 01:43
- 9 Respostas
- 16247 Exibições
- Última mensagem por paulo testoni

Qua Out 01, 2008 16:23
Álgebra Elementar
Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.