por leonardoandra » Seg Nov 19, 2012 20:44
Bem, tenho uma equação, da qual eu jah ateh sei o resultadom mas gostaria de saber como foi feito o calculo para chegar no resultado, segue:
equação: 6x^3-4x^2-x-2x^3+2x^2+x
resultado: 4x^3-2x^2
como chegou neste resultado?
obrigado
-
leonardoandra
- Novo Usuário

-
- Mensagens: 5
- Registrado em: Seg Nov 19, 2012 20:34
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Ciencia da Computação
- Andamento: cursando
por fraol » Seg Nov 19, 2012 21:33
leonardoandra escreveu:Bem, tenho uma equação, da qual eu jah ateh sei o resultadom mas gostaria de saber como foi feito o calculo para chegar no resultado, segue:
equação: 6x^3-4x^2-x-2x^3+2x^2+x
resultado: 4x^3-2x^2
como chegou neste resultado?
obrigado
Observe:
Partindo de

, vamos agrupar e resolver os termos semelhantes:

= { agrupando, juntando os termos semelhantes, neste caso aqueles contendo

com o mesmo expoente }

= { resolvendo = somar, subtrair, etc. }

Veja se restou alguma dúvida.
.
-
fraol
- Colaborador Voluntário

-
- Mensagens: 392
- Registrado em: Dom Dez 11, 2011 20:08
- Localização: Mogi das Cruzes-SP
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática
- Andamento: formado
por leonardoandra » Seg Nov 19, 2012 21:48
Simples neh,
Mto obrigado, eu estava me perdendo no agrupamento, não sabia isso dos termos semelhantes.
Obrigado mesmo!
-
leonardoandra
- Novo Usuário

-
- Mensagens: 5
- Registrado em: Seg Nov 19, 2012 20:34
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Ciencia da Computação
- Andamento: cursando
Voltar para Álgebra Elementar
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Preciso de uma explicação passo a passo para esse exercício
por Dankaerte » Qui Ago 27, 2009 14:24
- 0 Respostas
- 2187 Exibições
- Última mensagem por Dankaerte

Qui Ago 27, 2009 14:24
Sistemas de Equações
-
- Alguém sabe como resolve (5/2)²-5(5/2)+6 passo a passo??
por Elia » Ter Jul 19, 2016 11:28
- 0 Respostas
- 2484 Exibições
- Última mensagem por Elia

Ter Jul 19, 2016 11:28
Sistemas de Equações
-
- Alguém sabe como resolve (5/2)²-5(5/2)+6 passo a passo??
por Elia » Qua Jul 20, 2016 13:57
- 2 Respostas
- 2010 Exibições
- Última mensagem por Elia

Qua Jul 20, 2016 17:51
Equações
-
- [Integração por substituição] Passo a passo, por favor?
por Ronaldobb » Seg Dez 17, 2012 16:24
- 4 Respostas
- 2986 Exibições
- Última mensagem por Ronaldobb

Ter Dez 18, 2012 13:50
Cálculo: Limites, Derivadas e Integrais
-
- Alguém poderia me explicar passo a passo?
por arthurvct » Dom Abr 21, 2013 17:12
- 1 Respostas
- 1371 Exibições
- Última mensagem por ant_dii

Seg Abr 22, 2013 00:31
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
[Função] do primeiro grau e quadratica
Autor:
Thassya - Sáb Out 01, 2011 16:20
1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?
2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?
3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?
Assunto:
[Função] do primeiro grau e quadratica
Autor:
Neperiano - Sáb Out 01, 2011 19:46
Ola
Qual as suas dúvidas?
O que você não está conseguindo fazer?
Nos mostre para podermos ajudar
Atenciosamente
Assunto:
[Função] do primeiro grau e quadratica
Autor:
joaofonseca - Sáb Out 01, 2011 20:15
1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.
Em

substitui-se
m, substitui-se
y e
x por um dos pares ordenados, e resolve-se em ordem a
b.
2)Na equação

não existem zeros.Senão vejamos
Completando o quadrado,
As coordenadas do vertice da parabola são
O eixo de simetria é a reta

.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.
f(-7)=93
f(10)=59
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.