• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Equação exponencial]

[Equação exponencial]

Mensagempor SCHOOLGIRL+T » Seg Nov 12, 2012 11:44

Supondo x um número real, (x>0 e x\neq1), a inequação {x}^{2x-1}<{x}^{3} tem como solução
a) 0<x<3
b) x<1
c) x>2
d) 1<x<2
Bom, eles disseram que x<0, mas, quando igualamos as bases, para mantermos o sinal de inequação ou inverter, precisamos saber se a base é maior ou menor que 1. Nesse caso, a base é x. Bom, considerando que a base é maior que 1, encontrei x<2 (não tem alternativa) e considerando que a base é menor que 1, encontrei x>2 e considerei que esta é a resposta. Está correto o meu pensamento?
SCHOOLGIRL+T
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 60
Registrado em: Qua Nov 07, 2012 08:59
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: [Equação exponencial]

Mensagempor young_jedi » Seg Nov 12, 2012 17:11

considerando que a base é maior que 1 voce encontrou que x<2 portanto

1<x<2

agora considerando que a base é menor que 1 voce encontrou que x>2

mais repare que isto é impossivel pois não tem como um numero x ser maior que 2 e menor que 1 ao mesmo tempo logo a opção acima é a correta.
letra d)
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: [Equação exponencial]

Mensagempor SCHOOLGIRL+T » Seg Nov 12, 2012 20:19

young_jedi escreveu:considerando que a base é maior que 1 voce encontrou que x<2 portanto

1<x<2

agora considerando que a base é menor que 1 voce encontrou que x>2

mais repare que isto é impossivel pois não tem como um numero x ser maior que 2 e menor que 1 ao mesmo tempo logo a opção acima é a correta.
letra d)


Obrigada^^
SCHOOLGIRL+T
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 60
Registrado em: Qua Nov 07, 2012 08:59
Formação Escolar: ENSINO MÉDIO
Andamento: cursando


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59