• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Divisão polinômios

Divisão polinômios

Mensagempor vivi » Dom Set 09, 2012 20:03

. Seja D um domínio e f(x)?D(x). Prove: Se f(x) é divisível por x-a e também por x-b sendo a,b ?D e a?b,então f(x) é divisível por (x-a)(x-b)

Oi eu pensei na divisão da seguinte forma D=d.q+r, como sei que o resto deve ser nulo pois x-a e x-b são divisores de f(x)...comecei dessa forma alguém poderia me ajudar a concluir o racícionío...

f(x)=(x-a).q
f(x)=xq-aq
E
f(x)=(x-b).q
f(x)=xq-bq
Logo xq-aq=xq-bq
-aq=-bq
-aq+bq=0
q(a+b)=0
q=0 ou a+b=0

Muito obrigado
vivi
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Dom Jun 26, 2011 19:14
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: Divisão polinômios

Mensagempor DanielFerreira » Dom Set 09, 2012 21:31

Olá Vivi,
boa noite!

- A divisão do polinômio f(x) por x - a dá resto 0, então f(a) = 0

- A divisão do polinômio f(x) por x - b dá resto 0, então f(b) = 0

Consideremos q(x) o quociente e r = cx + d o resto da divisão do polinômio f(x) por (x - a)(x - b), segue que

\boxed{f(x) = q(x) \cdot (x - a)(x - b) + r}

f(x) = q(x) \cdot (x - a)(x - b) + cx + d


Quando f(a):

f(a) = q(a) \cdot (a - a)(a - b) + c \cdot a + d

0 = ac + d


Quando f(b):

f(b) = q(b)(b - a)(b - b) + c \cdot b + d

0 = bc + d

Resolvendo o sistema:

\begin{cases} ac + d = 0 \\ bc + d = 0 \end{cases}

Encontramos, a = b, mas de acordo com o enunciado, a \neq b, com isso, podemos concluir que \boxed{c = 0}. Substituindo esse valor em uma das outras equações, teremos \boxed{d = 0}.

Logo,
r = cx + d

\boxed{\boxed{r = 0}}

Espero ter ajudado!

Daniel F.

Já estava esquecendo de comentar sua solução.

Se q for o quociente, e tenho certeza que sim, você não pode considerá-lo igual a zero. Mas sim a + b = 0
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado

Re: Divisão polinômios

Mensagempor vivi » Seg Set 10, 2012 11:36

Ajudou muito, agora consegui entender o raciocínio correto.

Obrigado!
vivi
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Dom Jun 26, 2011 19:14
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: Divisão polinômios

Mensagempor DanielFerreira » Seg Set 10, 2012 23:11

Não há de quê e volte sempre!

Daniel F.
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 11 visitantes

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.