+2nx+n+2=0 tenham duas raizes reais distintas e maiores que zero devem pertencer ao intervalo:A) (-
,
) B) (-infinito, -
)União(
, +infinito) C) (-2, -
) D) (
, 2) E) (-2, 2) Bom pessol, quanto a resolução deste exercício, vou contar pra vocês o que eu já fiz.
Identifiquei que se trata de uma equação do segundo grau, portanto os coeficientes são a= (2-n) b=2n e c = (n+2)
Como queremos duas raizes reais e distintas, admitiremos que Delta deve ser maior que zero, resolvendo a expressão Delta, encontraremos dois valores de n, são eles:
n` =
![\sqrt[2]{2} \sqrt[2]{2}](/latexrender/pictures/a8f8ae3924f6c44624745ca9e588cae3.png)
n`` = -
![\sqrt[2]{2} \sqrt[2]{2}](/latexrender/pictures/a8f8ae3924f6c44624745ca9e588cae3.png)
Pois bem, ai é que começa meu problema, identificar qual o intervalo a que "n" deve pertencer para que as raízes desta equação, sejam além de distintas, positivas.
Ví uma resolução onde foi dito a seguinte afirmação:
"para que as raízes desta equação sejam maiores que zero, o produto e a soma entre elas, também devem ser."
Concordando com esta informação, tentei caminhar.
S = -b/2a
S = -2n/2-n>0
P = c/a
P = n+2/2-n>0
Mais não consigo sair daqui, não caminho.....
Observei que a resolução da pessoa que comentei acima, diz o seguinte, depois de resolver, "não sei como" as inequações acima:
Soma ele encontrou n<0
Produto ele encontrou n>-2
Com isto ele concluí que a resposta é que "n" deve pertencer ao intervalo (-2, -
)!É este o ponto amigos, não consigo entender o que este cara fez, me confundi e atrapalhei todo no momento que apareceram as inequações que fora,m geradas com as expressões de Soma e Produto.
Se puderem me orientar, agradeço

e isto deve ser maior que zero, logo
e
, portanto
ou
. Ou seja,
.

![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)

, ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio. ![{0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20} {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}](/latexrender/pictures/c0100c6f4d8bdbb7d54165e6be7aff04.png)
da seguinte forma:
.
da seguinte forma:
.