por Danilo » Sex Ago 10, 2012 11:34
Dúvida em outro exercício ! Lá vai:
![\frac{\sqrt[3]{9} - 1}{\sqrt[3]{3} - 1} \frac{\sqrt[3]{9} - 1}{\sqrt[3]{3} - 1}](/latexrender/pictures/8669a1ab7724e2db0e3c4045de7e34e1.png)
Bom, tentei fazer assim:
![\left(\frac{\sqrt[3]{9} - 1}{\sqrt[3]{3} - 1} \right) \cdot \left(\frac{\sqrt[3]{3} + 1}{\sqrt[3]{3} + 1} \right) \left(\frac{\sqrt[3]{9} - 1}{\sqrt[3]{3} - 1} \right) \cdot \left(\frac{\sqrt[3]{3} + 1}{\sqrt[3]{3} + 1} \right)](/latexrender/pictures/e21a52a82176078a77a114e10ad96377.png)
=
Aí eu tento resolver normalmente, mas eu não consigo fazer a simplificação pois é como se eu desse ''voltas'' e não chegasse a lugar algum. Tentei também colocar na forma de potência cada raíz e tentar resolver mas também não deu... O caminho é mesmo esse, ou há uma maneira mais simples de resolver? Grato !
-
Danilo
- Colaborador Voluntário

-
- Mensagens: 224
- Registrado em: Qui Mar 15, 2012 23:36
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática
- Andamento: cursando
por LuizAquino » Sex Ago 10, 2012 11:40
Danilo escreveu:Dúvida em outro exercício ! Lá vai:
![\frac{\sqrt[3]{9} - 1}{\sqrt[3]{3} - 1} \frac{\sqrt[3]{9} - 1}{\sqrt[3]{3} - 1}](/latexrender/pictures/8669a1ab7724e2db0e3c4045de7e34e1.png)
Bom, tentei fazer assim:
![\left(\frac{\sqrt[3]{9} - 1}{\sqrt[3]{3} - 1} \right) \cdot \left(\frac{\sqrt[3]{3} + 1}{\sqrt[3]{3} + 1} \right) \left(\frac{\sqrt[3]{9} - 1}{\sqrt[3]{3} - 1} \right) \cdot \left(\frac{\sqrt[3]{3} + 1}{\sqrt[3]{3} + 1} \right)](/latexrender/pictures/e21a52a82176078a77a114e10ad96377.png)
=
Aí eu tento resolver normalmente, mas eu não consigo fazer a simplificação pois é como se eu desse ''voltas'' e não chegasse a lugar algum. Tentei também colocar na forma de potência cada raíz e tentar resolver mas também não deu... O caminho é mesmo esse, ou há uma maneira mais simples de resolver? Grato !
Você lembra que no
seu outro tópico eu recomendei a videoaula do
Nerckie "Matemática Zero - Aula 12 - Racionalização"? Pois bem, você chegou a assistir a Parte 3 dela? Na metade dessa parte é resolvido um exercício como esse.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por Danilo » Sex Ago 10, 2012 11:47
LuizAquino escreveu:Danilo escreveu:Dúvida em outro exercício ! Lá vai:
![\frac{\sqrt[3]{9} - 1}{\sqrt[3]{3} - 1} \frac{\sqrt[3]{9} - 1}{\sqrt[3]{3} - 1}](/latexrender/pictures/8669a1ab7724e2db0e3c4045de7e34e1.png)
Bom, tentei fazer assim:
![\left(\frac{\sqrt[3]{9} - 1}{\sqrt[3]{3} - 1} \right) \cdot \left(\frac{\sqrt[3]{3} + 1}{\sqrt[3]{3} + 1} \right) \left(\frac{\sqrt[3]{9} - 1}{\sqrt[3]{3} - 1} \right) \cdot \left(\frac{\sqrt[3]{3} + 1}{\sqrt[3]{3} + 1} \right)](/latexrender/pictures/e21a52a82176078a77a114e10ad96377.png)
=
Aí eu tento resolver normalmente, mas eu não consigo fazer a simplificação pois é como se eu desse ''voltas'' e não chegasse a lugar algum. Tentei também colocar na forma de potência cada raíz e tentar resolver mas também não deu... O caminho é mesmo esse, ou há uma maneira mais simples de resolver? Grato !
Você lembra que no
seu outro tópico eu recomendei a videoaula do
Nerckie "Matemática Zero - Aula 12 - Racionalização"? Pois bem, você chegou a assistir a Parte 3 dela? Na metade dessa parte é resolvido um exercício como esse.
Sim, é verdade. Esqueci da propriedade que dá para eliminar a raiz no denominador instantaneamente. Thanks again

-
Danilo
- Colaborador Voluntário

-
- Mensagens: 224
- Registrado em: Qui Mar 15, 2012 23:36
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática
- Andamento: cursando
Voltar para Álgebra Elementar
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Dúvida radiciação
por sullivan » Ter Jan 24, 2012 13:41
- 3 Respostas
- 1722 Exibições
- Última mensagem por LuizAquino

Ter Jan 24, 2012 17:00
Álgebra Elementar
-
- Radiciação dúvida!
por LuizCarlos » Ter Mai 15, 2012 18:57
- 3 Respostas
- 1997 Exibições
- Última mensagem por LuizAquino

Sex Mai 18, 2012 13:26
Álgebra Elementar
-
- Radiciação - Dúvida
por Danilo » Qui Ago 09, 2012 22:37
- 2 Respostas
- 1337 Exibições
- Última mensagem por Danilo

Sex Ago 10, 2012 00:04
Álgebra Elementar
-
- Dúvida - radiciação
por Danilo » Sex Ago 10, 2012 01:53
- 3 Respostas
- 1557 Exibições
- Última mensagem por Danilo

Sex Ago 10, 2012 11:22
Álgebra Elementar
-
- Radiciação - dúvida
por Danilo » Sex Ago 10, 2012 18:33
- 2 Respostas
- 1446 Exibições
- Última mensagem por Danilo

Sex Ago 10, 2012 20:01
Álgebra Elementar
Usuários navegando neste fórum: Nenhum usuário registrado e 6 visitantes
Assunto:
cálculo de limites
Autor:
Hansegon - Seg Ago 25, 2008 11:29
Bom dia.
Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado
\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]
Assunto:
cálculo de limites
Autor:
Molina - Seg Ago 25, 2008 13:25
Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.
Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo.
Caso ainda não tenha dado uma

, avisa que eu resolvo.
Bom estudo!
Assunto:
cálculo de limites
Autor:
Guill - Dom Abr 08, 2012 16:03

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.