• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Torneiras A e B

Torneiras A e B

Mensagempor Cleyson007 » Seg Jun 08, 2009 14:46

Boa tarde!

Penso que o problema abaixo pode ser resolvido montando um sistema de equações. Estou encontrando dificuldade para montar as equações. Alguém pode me ajudar?

--> Com duas torneiras A e B, abertas simultaneamente,
consegue-se encher um tanque de água em 6 minutos.
Encher esse tanque com a torneira A aberta e a torneira
B fechada demora 5 minutos a mais do que com a
torneira A fechada e a torneira B aberta. O tempo necessário
para encher o tanque abrindo apenas a torneira
A é:
A) 15 minutos
B) 15 minutos e 30 segundos
C) 16 minutos
D) 16 minutos e 30 segundos
E) 18 minutos

Agradeço sua ajuda!

Um abraço.

Até mais
A Matemática está difícil? Não complica! Mande para cá: descomplicamat@hotmail.com

Imagem
Avatar do usuário
Cleyson007
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1228
Registrado em: Qua Abr 30, 2008 00:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática UFJF
Andamento: formado

Re: Torneiras A e B

Mensagempor ginrj » Seg Jun 08, 2009 18:17

puxa achei 2 resultados diferentes, 15 min e 30 segs e 17 min Oo, nao consegui ainda chegar a um resultado preciso, usei sistemas., acredito que no exercicio podia falar os litros que os dois enchem ligados juntos, bom ainda nao cheguei a uma resposta fixa, estou tentando ainda ^^, em breve respondo se possivel com a resolução para ajudar o amigo
Os números governam o Universo
ginrj
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 37
Registrado em: Sex Mar 06, 2009 18:28
Localização: Rio de Janeiro
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Pré.Militar
Andamento: cursando

Re: Torneiras A e B

Mensagempor Marcampucio » Seg Jun 08, 2009 19:14

As vazões das torneiras são

V_b=\frac{Q}{t}

V_a=\frac{Q}{t+5}

V_a+V_b=\frac{Q}{6}

onde Q é a capacidade do reservatório

\frac{Q}{t}+\frac{Q}{t+5}=\frac{Q}{6}

simplifica por Q e calcula t o tempo de A é t+5
A revelação não acontece ao encontrar o sábio no alto da montanha. A revelação vem com a subida da montanha.
Marcampucio
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 180
Registrado em: Ter Mar 10, 2009 17:48
Localização: São Paulo
Formação Escolar: GRADUAÇÃO
Área/Curso: geologia
Andamento: formado

Re: Torneiras A e B

Mensagempor ginrj » Seg Jun 08, 2009 20:28

compreendi seu raciocinio, tambem estou nessa so que dei nomes diferentes, mais nao consigo passar disso
Os números governam o Universo
ginrj
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 37
Registrado em: Sex Mar 06, 2009 18:28
Localização: Rio de Janeiro
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Pré.Militar
Andamento: cursando

Re: Torneiras A e B

Mensagempor Marcampucio » Seg Jun 08, 2009 22:06

\\\frac{1}{t}+\frac{1}{t+5}=\frac{1}{6}\\\frac{t+5+t}{t(t+5)}=\frac{1}{6}

\\12t+30=t^2+5t\\t^2-7t-30=0

\begin{cases}t=10\\t=-3\end{cases}

só tem sentido o tempo positivo, portanto t=10min o tempo para a torneira A sozinha é t+5=15min
A revelação não acontece ao encontrar o sábio no alto da montanha. A revelação vem com a subida da montanha.
Marcampucio
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 180
Registrado em: Ter Mar 10, 2009 17:48
Localização: São Paulo
Formação Escolar: GRADUAÇÃO
Área/Curso: geologia
Andamento: formado

Re: Torneiras A e B

Mensagempor Cleyson007 » Ter Jun 09, 2009 13:10

Boa tarde Marcampucio e Ginrj!

Como já disse, a dúvida era justamente em montar as equações.

Compreendi o processo de resolução :-D

Obrigado pela ajuda.

Se precisarem de algo, e for do meu alcance, podem contar com minha ajuda. :-O

Um abraço.

Até mais.
A Matemática está difícil? Não complica! Mande para cá: descomplicamat@hotmail.com

Imagem
Avatar do usuário
Cleyson007
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1228
Registrado em: Qua Abr 30, 2008 00:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática UFJF
Andamento: formado

Re: Torneiras A e B

Mensagempor ginrj » Ter Jun 09, 2009 16:52

^^ consegui tbm, compreendi o raciocinio do amigo, show de bola essa questao
Os números governam o Universo
ginrj
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 37
Registrado em: Sex Mar 06, 2009 18:28
Localização: Rio de Janeiro
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Pré.Militar
Andamento: cursando


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}