• Anúncio Global
    Respostas
    Exibições
    Última mensagem

ÁLGEBRA

ÁLGEBRA

Mensagempor Faria » Sáb Mai 21, 2011 17:43

Boa tarde profº, td bem? Eu e meu grupo estamos resolvendo uma lista de exercìcios para

nota. Faltam apenas 4 e, 16 já resovidos. Não temos mais idéia do que fazer. Peço por favor

sua ajuda.

1) Sendo n um número natural, a expressão ({2}^{n+1}+{2}^{n+2})*({3}^{n+2}-{3}^{n+1})/{6}^{n+2} é igual a:

Neste exercício tentamos resolver como função exponecial e, também aplicando a distributiva.

2) Se n pertence a N e n>1, então o valor de \sqrt[n]{20/{4}^{n+2}+{2}^{2n+2}}

Aqui tentamos resolver o denominador por exponencial e, simplicar o que era possível.

3) O valor de {x}^{4}-{y}^{4}/{x}^{3}-{x}^{2}*y+x*{y}^{2}-{y}^{3}, para x=111 e

y=112, é:

No exercício em questão tentamos aplicar as regras de fatoração, evidência e simplificação.

4) Calcule o valor de {a}^{2}+1/{a}^{2}, sabendo que a+1/a=5.

No último exercício tentamos calcular o mmc e, depois montamos uma equação do 2º grau,

mas como nos casos anteriores não conseguimos finalizar.

Agradecemos por sua atenção,

Um abraço.
Faria
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Sáb Mai 21, 2011 16:49
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: tecnico em processamento de dados
Andamento: formado

Re: ÁLGEBRA

Mensagempor MarceloFantini » Sex Set 23, 2011 19:13

Lembre-se que 2^{n+1} = 2^n \cdot 2, 2^{n+2} = 2^n \cdot 2^2, 3^{n+2} = 3^n \cdot 3^2, 3^{n+1} = 3^n \cdot 3, 6^{n+2} = 6^n \cdot 6^2 e que podemos fazer 6^n = (2 \cdot 3)^n = 2^n \cdot 3^n. Tente fazer o primeiro usando isso.

Uma tática quase idêntica se aplica ao segundo, basta lembrar um número com expoente negativo basta inverter a fração, ou seja, a^{-b} = \frac{1}{a^b}.

Para o terceiro, basta usar que x^4 -y^4 = (x-y)(x+y)(x^2 +y^2) e x^3 -x^2y +xy^2 -y^3 = (x-y)(x^2+y^2).

No último, faça \left( a + \frac{1}{a}\right)^2 = 5^2 e veja o que acontece.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59