• Anúncio Global
    Respostas
    Exibições
    Última mensagem

ÁLGEBRA

ÁLGEBRA

Mensagempor Faria » Sáb Mai 21, 2011 17:43

Boa tarde profº, td bem? Eu e meu grupo estamos resolvendo uma lista de exercìcios para

nota. Faltam apenas 4 e, 16 já resovidos. Não temos mais idéia do que fazer. Peço por favor

sua ajuda.

1) Sendo n um número natural, a expressão ({2}^{n+1}+{2}^{n+2})*({3}^{n+2}-{3}^{n+1})/{6}^{n+2} é igual a:

Neste exercício tentamos resolver como função exponecial e, também aplicando a distributiva.

2) Se n pertence a N e n>1, então o valor de \sqrt[n]{20/{4}^{n+2}+{2}^{2n+2}}

Aqui tentamos resolver o denominador por exponencial e, simplicar o que era possível.

3) O valor de {x}^{4}-{y}^{4}/{x}^{3}-{x}^{2}*y+x*{y}^{2}-{y}^{3}, para x=111 e

y=112, é:

No exercício em questão tentamos aplicar as regras de fatoração, evidência e simplificação.

4) Calcule o valor de {a}^{2}+1/{a}^{2}, sabendo que a+1/a=5.

No último exercício tentamos calcular o mmc e, depois montamos uma equação do 2º grau,

mas como nos casos anteriores não conseguimos finalizar.

Agradecemos por sua atenção,

Um abraço.
Faria
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Sáb Mai 21, 2011 16:49
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: tecnico em processamento de dados
Andamento: formado

Re: ÁLGEBRA

Mensagempor MarceloFantini » Sex Set 23, 2011 19:13

Lembre-se que 2^{n+1} = 2^n \cdot 2, 2^{n+2} = 2^n \cdot 2^2, 3^{n+2} = 3^n \cdot 3^2, 3^{n+1} = 3^n \cdot 3, 6^{n+2} = 6^n \cdot 6^2 e que podemos fazer 6^n = (2 \cdot 3)^n = 2^n \cdot 3^n. Tente fazer o primeiro usando isso.

Uma tática quase idêntica se aplica ao segundo, basta lembrar um número com expoente negativo basta inverter a fração, ou seja, a^{-b} = \frac{1}{a^b}.

Para o terceiro, basta usar que x^4 -y^4 = (x-y)(x+y)(x^2 +y^2) e x^3 -x^2y +xy^2 -y^3 = (x-y)(x^2+y^2).

No último, faça \left( a + \frac{1}{a}\right)^2 = 5^2 e veja o que acontece.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}