por Joan » Seg Jul 25, 2011 16:38
Sejam p e q números reais positicos tais que
![\frac{1}{p} + \frac{1}{q} = \frac{1}{\sqrt[]{2010}} \frac{1}{p} + \frac{1}{q} = \frac{1}{\sqrt[]{2010}}](/latexrender/pictures/16c434558b78f2ff3ae8e62e1027459f.png)
. Qual o valor mínimo do produto pq?
oq consegui fazer foi somente o inicio e depois nao sei oq faço:
![\frac{p+q}{pq} = \frac{1}{\sqrt[]{2010}} \rightarrow p+q = \frac{pq}{\sqrt[]{2010}} \frac{p+q}{pq} = \frac{1}{\sqrt[]{2010}} \rightarrow p+q = \frac{pq}{\sqrt[]{2010}}](/latexrender/pictures/0da559bb010c5e1b7ac55e8304d37fda.png)
Infelismente nao sei oq fazer mais...
desde já grato.
-
Joan
- Usuário Ativo

-
- Mensagens: 12
- Registrado em: Sex Jul 22, 2011 18:07
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
por Joan » Seg Jul 25, 2011 18:04
Amigo agradeço a boa vontade, mais no gabarito da prova tá a resposta como 8040. oq pode ta errado?
-
Joan
- Usuário Ativo

-
- Mensagens: 12
- Registrado em: Sex Jul 22, 2011 18:07
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
por MarceloFantini » Ter Jul 26, 2011 11:04
Continuando o que o colega Guill fez, temos:

Mas sabemos que

. Portanto,

e segue que

. Finalmente,

, e a resposta é que o valor mínimo de

é 8040.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por LuizAquino » Ter Jul 26, 2011 11:25
Guill escreveu:Racionalizando:
![\frac{p+q}{pq}=\frac{\sqrt[]{2010}}{2010} \frac{p+q}{pq}=\frac{\sqrt[]{2010}}{2010}](/latexrender/pictures/b3d4c370b9f2f07c13b0693d43fc7c2e.png)

Joan escreveu:Amigo agradeço a boa vontade, mais no gabarito da prova tá a resposta como 8040. oq pode ta errado?
O erro na solução de Guill está no fato de que se

, então
não necessariamente a = c e b = d.
Por exemplo, se a = 5 e b = 10, temos que

. Entretanto, note que

e

.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por Joan » Ter Jul 26, 2011 14:55
Nao comprendi, mais obrigado a todos pela ajuda.
-
Joan
- Usuário Ativo

-
- Mensagens: 12
- Registrado em: Sex Jul 22, 2011 18:07
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
por Fabricio dalla » Ter Jul 26, 2011 16:47
Mas sabemos que
eu n entendi o que Marcelo Fantine fez.ele pré supôs fazendo aquela comparaçao de que a media aritimetica e maior que media geometrica pra conseguir resolver a questão ?
-
Fabricio dalla
- Colaborador Voluntário

-
- Mensagens: 111
- Registrado em: Sáb Fev 26, 2011 17:50
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
por MarceloFantini » Ter Jul 26, 2011 16:58
Isso é um teorema importante, que a média aritmética é sempre maior ou igual a média geométrica.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por LuizAquino » Ter Jul 26, 2011 21:35
Fabricio dalla escreveu:eu n entendi o que Marcelo Fantine fez.ele pré supôs fazendo aquela comparaçao de que a media aritimetica e maior que media geometrica pra conseguir resolver a questão ?
Dados dois números reais positivos, é fácil verificar que

.
Em outras palavras, como escreveu o colega Fantini, essa desigualdade nos diz que
a média aritmética entre dois números é sempre maior ou igual do que a média geométrica entre eles.
Para justificar essa desigualdade, começamos observando o fato de que

, para quaisquer
a e
b reais positivos.
Desenvolvendo o produto notável, obtemos:

Mas, isso é o mesmo que:

Por fim, podemos reescrever essa desigualdade como:

#
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
Voltar para Álgebra Elementar
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- MMC e MDC - Colégio Naval
por igorcamilo » Sáb Jun 25, 2011 21:22
- 1 Respostas
- 1912 Exibições
- Última mensagem por FilipeCaceres

Dom Jun 26, 2011 16:13
Álgebra Elementar
-
- Divisibilidade - Colégio naval
por igorcamilo » Sex Jun 24, 2011 19:22
- 2 Respostas
- 2307 Exibições
- Última mensagem por igorcamilo

Sex Jun 24, 2011 20:32
Álgebra Elementar
-
- Colégio Naval - Aritmética dos inteiros
por eliky » Sex Mai 17, 2013 01:16
- 1 Respostas
- 2234 Exibições
- Última mensagem por DanielFerreira

Dom Mai 19, 2013 20:40
Aritmética
-
- [triângulo equilátero] Questão Colégio Naval 2010
por Joan » Sex Jul 22, 2011 18:42
- 3 Respostas
- 3508 Exibições
- Última mensagem por Joan

Sáb Jul 23, 2011 11:34
Geometria Plana
-
- [conjunto solução em R] Questão Colégio Naval 2010
por Joan » Sáb Jul 23, 2011 12:06
- 2 Respostas
- 5191 Exibições
- Última mensagem por Joan

Sáb Jul 23, 2011 13:21
Equações
Usuários navegando neste fórum: Nenhum usuário registrado e 8 visitantes
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.