• Anúncio Global
    Respostas
    Exibições
    Última mensagem

questao das torneiras

questao das torneiras

Mensagempor hevhoram » Qui Jun 23, 2011 12:42

Um tanque tem duas torneiras. A primeira enche o tanque em 15 horas, e a segunda, em 18 horas. Estando o tanque vazio e, abrindo-se as duas torneiras durante 5 horas, enche-se uma parte do tanque. Podemos afirmar que a segunda torneira encherá o restante do tanque em:

R. 7 horas

eu ja vi problemas com uma torneira enchendo e outra esvaziando \frac{t1*t2}{t1-t2}
e com duas torneiras enchendo simultaneamente \frac{t1*t2}{t1+t2}

mas este tipo de questão nao sei nem como começar .. alguem pode me da uma ajuda?
Avatar do usuário
hevhoram
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 61
Registrado em: Qua Jun 02, 2010 11:43
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: informática educacional
Andamento: formado

Re: questao das torneiras

Mensagempor FilipeCaceres » Qui Jun 23, 2011 15:25

Façamos o seguinte,
1h T_a enche \frac{1}{15} tanque

1h T_b enche \frac{1}{18} tanque

1h T_a+T_b enche \frac{1}{15}+\frac{1}{18}=\frac{11}{90} tanque

5h T_a+T_b enche 5.\frac{11}{90}=\frac{11}{18} tanque

Logo nos resta encher 1-\frac{11}{18}=\frac{7}{18}

Por regra de 3 encontramos,
1h\rightarrow\,\,\,\,\,\frac{1}{18}

xh\rightarrow\,\,\,\,\,\frac{7}{18}

\boxed{x=7\,h}

Abraço.
FilipeCaceres
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 351
Registrado em: Dom Out 31, 2010 21:43
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Tec. Mecatrônica
Andamento: formado

Re: questao das torneiras

Mensagempor hevhoram » Seg Jun 27, 2011 15:33

valeo obrigado
Avatar do usuário
hevhoram
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 61
Registrado em: Qua Jun 02, 2010 11:43
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: informática educacional
Andamento: formado


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}