por Abelardo » Dom Abr 10, 2011 01:03
Prove que: "Se

então

.
Conheço uma demonstração, mas gostaria de ver outras!!
-

Abelardo
- Colaborador Voluntário

-
- Mensagens: 159
- Registrado em: Qui Mar 03, 2011 01:45
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
por Renato_RJ » Dom Abr 10, 2011 01:27
Se

, então teremos:

Sendo

.
O que implica em

Não é uma demonstração formal, só a minha opinião...
Iniciando a minha "caminhada" pela matemática agora... Tenho muito o quê aprender...
-

Renato_RJ
- Colaborador Voluntário

-
- Mensagens: 306
- Registrado em: Qui Jan 06, 2011 15:47
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado em Matemática
- Andamento: cursando
por Abelardo » Dom Abr 10, 2011 01:39
Bote fé mesmo, porque com essa demonstração fiquei satisfeito e pude crer sim que a congruência é válida quando multiplicamos a, b e c por k pertecente aos inteiros!!
-

Abelardo
- Colaborador Voluntário

-
- Mensagens: 159
- Registrado em: Qui Mar 03, 2011 01:45
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
Voltar para Álgebra Elementar
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Congruência
por ronie_mota » Dom Set 27, 2009 16:59
- 1 Respostas
- 1714 Exibições
- Última mensagem por Molina

Seg Set 28, 2009 16:15
Álgebra Elementar
-
- congruência
por hatsurei » Ter Set 13, 2011 11:09
- 1 Respostas
- 7769 Exibições
- Última mensagem por ronaldoh

Qui Jan 05, 2012 17:26
Álgebra Elementar
-
- Divisibilidade, congruência
por ckde » Seg Ago 02, 2010 10:42
- 0 Respostas
- 1132 Exibições
- Última mensagem por ckde

Seg Ago 02, 2010 10:42
Álgebra Elementar
-
- Demonstração de Congruência
por Balanar » Dom Ago 29, 2010 19:55
- 1 Respostas
- 1333 Exibições
- Última mensagem por Guill

Dom Jul 03, 2011 17:45
Álgebra Elementar
-
- Congruência e Divisibidade
por fernando_filho » Qua Jun 26, 2013 19:52
- 0 Respostas
- 919 Exibições
- Última mensagem por fernando_filho

Qua Jun 26, 2013 19:52
Aritmética
Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes
Assunto:
cálculo de limites
Autor:
Hansegon - Seg Ago 25, 2008 11:29
Bom dia.
Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado
\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]
Assunto:
cálculo de limites
Autor:
Molina - Seg Ago 25, 2008 13:25
Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.
Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo.
Caso ainda não tenha dado uma

, avisa que eu resolvo.
Bom estudo!
Assunto:
cálculo de limites
Autor:
Guill - Dom Abr 08, 2012 16:03

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.