por renanrdaros » Sex Mar 25, 2011 18:27

Resolvendo a expressão e analisando os dois casos possíveis, chego em uma inequação de 2º grau com \Delta<0
Como resolvo a partir daí? O resultado do livro não é vazio!
-
renanrdaros
- Usuário Parceiro

-
- Mensagens: 54
- Registrado em: Sáb Mar 19, 2011 19:37
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Eng. de Computação
- Andamento: cursando
por LuizAquino » Sex Mar 25, 2011 18:31
Envie a sua resolução para que possamos identificar onde está o problema.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por renanrdaros » Sex Mar 25, 2011 18:56


Multiplicando ambos os lados pelo denominador, simplificando e considerando os dois casos (denominador<0 e denominador>0), chego nas seguintes inequações:

e

Elas não têm raízes reais. E a partir daí não sei resolver.
-
renanrdaros
- Usuário Parceiro

-
- Mensagens: 54
- Registrado em: Sáb Mar 19, 2011 19:37
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Eng. de Computação
- Andamento: cursando
por MarceloFantini » Sex Mar 25, 2011 20:22
Vamos analisar assim:

. Como o numerador é sempre positivo, basta descobrir quando

é negativo.


Assim,

.
Em questões assim, não elimine o denominador. Trabalhe com a fração.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por renanrdaros » Sáb Mar 26, 2011 01:52
Obrigado por mais essa!
-
renanrdaros
- Usuário Parceiro

-
- Mensagens: 54
- Registrado em: Sáb Mar 19, 2011 19:37
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Eng. de Computação
- Andamento: cursando
por LuizAquino » Sáb Mar 26, 2011 10:31
renanrdaros escreveu:Multiplicando ambos os lados pelo denominador, simplificando e considerando os dois casos (denominador<0 e denominador>0), chego nas seguintes inequações:

e

É comum os alunos cometerem o equívoco de multiplicar as inequações usando expressões e não se preocupar com o sinal das mesmas. Leia no tópico a seguir um comentário a respeito disso:
inequação, dúvida.viewtopic.php?f=106&t=3856
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por johnlaw » Dom Mar 27, 2011 13:08
Então, desenvolvendo o

eu chego em

. O denominador fica igual, mas não posso dizer que ele será maior que zero e então encontrar somente o denominador.
Desenvolvi assim:





Para dar a equaçã de 2º grau acima, aquele primeiro +x (na 3ª linha desenvolvida) deveria ser -x, mas o que fiz está errado ?
Valeu! Abraços a todos!
-
johnlaw
- Usuário Ativo

-
- Mensagens: 20
- Registrado em: Sex Ago 06, 2010 13:12
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática Licenciatura
- Andamento: cursando
por johnlaw » Dom Mar 27, 2011 16:33
Ah sim!! OK Luiz, muito obrigado!
Abraços!
-
johnlaw
- Usuário Ativo

-
- Mensagens: 20
- Registrado em: Sex Ago 06, 2010 13:12
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática Licenciatura
- Andamento: cursando
Voltar para Álgebra Elementar
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- (Equação de 2° grau) com o Delta sem valor exato
por morcego265 » Sáb Jul 27, 2013 13:48
- 1 Respostas
- 1402 Exibições
- Última mensagem por DanielFerreira

Sáb Ago 03, 2013 08:48
Equações
-
- [Inequação] Menor Inteiro Positivo
por CJunior » Qui Fev 06, 2014 21:37
- 2 Respostas
- 1831 Exibições
- Última mensagem por e8group

Qui Fev 06, 2014 22:30
Álgebra Elementar
-
- Função do 2° grau - o menor valor numa expressão
por PeterHiggs » Sex Mai 25, 2012 22:24
- 1 Respostas
- 2236 Exibições
- Última mensagem por PeterHiggs

Sáb Mai 26, 2012 16:09
Funções
-
- Inequação 2o grau
por guijermous » Sex Fev 26, 2010 14:29
- 3 Respostas
- 3580 Exibições
- Última mensagem por Molina

Sex Fev 26, 2010 18:00
Funções
-
- Inequação 1° grau
por Luiza » Sex Jul 16, 2010 10:14
- 1 Respostas
- 2654 Exibições
- Última mensagem por Tom

Sex Jul 16, 2010 12:34
Álgebra Elementar
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.