por Abelardo » Ter Mar 08, 2011 00:42
Não consigo demonstrar essas três questões!Alguma dica, por favor!
83) Mostre que existem

e

racionais tais que
![\sqrt[]{18 - 8 \sqrt[]{2}}=a + b\sqrt[]{2} \sqrt[]{18 - 8 \sqrt[]{2}}=a + b\sqrt[]{2}](/latexrender/pictures/8ea859c3d9626f90602be68cf7a92993.png)
84)Dados dois números x e y reais e positivos, chama-se média aritmética de x com y o real

e chama-se média geométrica o real
![g=\sqrt[]{xy} g=\sqrt[]{xy}](/latexrender/pictures/1b1a50a0e8fd3637db98a6830e1470f7.png)
. Mostre que

para todos

87) Prove que, dado um número racional

e um número natural

, nem sempre
![\sqrt[n]{\frac{a}{b}} \sqrt[n]{\frac{a}{b}}](/latexrender/pictures/317d53501ad6cd19416e2938df2defda.png)
é racional.
Qualquer dica é bem vinda!
Editado pela última vez por
Abelardo em Ter Mar 08, 2011 10:33, em um total de 1 vez.
-

Abelardo
- Colaborador Voluntário

-
- Mensagens: 159
- Registrado em: Qui Mar 03, 2011 01:45
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
por Pedro123 » Ter Mar 08, 2011 01:51
Olha abelardo, pra 84 ja vi uma demonstração, não sei se é valida, mas é interessante.... haha
faça o seguinte produto notavel,
![(\sqrt[2]{x} - \sqrt[2]{y})^{2} (\sqrt[2]{x} - \sqrt[2]{y})^{2}](/latexrender/pictures/a3ce79d5e19e738e0eacb09a845a3ff0.png)
, perceba que como está ao quadrado,e , pelo enunciado, X e Y são numeros positivos, é claro que isso resultará em um numero positivo, ou igual a zero, logo:
![(\sqrt[2]{x} - \sqrt[2]{y})^{2} \geq 0 (\sqrt[2]{x} - \sqrt[2]{y})^{2} \geq 0](/latexrender/pictures/e4bb14558001f03a4ecc4875acf7ef06.png)
Desenvolvendo,
![x - 2\sqrt[2]{x.y} + y \geq 0 x - 2\sqrt[2]{x.y} + y \geq 0](/latexrender/pictures/343e2cb2e73652d1c1d7e6c2a9e3fee8.png)
![x + y \geq 2\sqrt[2]{x.y} x + y \geq 2\sqrt[2]{x.y}](/latexrender/pictures/bd88f98b2d6ee2b9dd8ad200a1721cca.png)
Logo, para todo x e y reais, positivos, teremos que
![\frac{x + y}{2} \geq \sqrt[2]{x.y} \frac{x + y}{2} \geq \sqrt[2]{x.y}](/latexrender/pictures/f8301043239b4da55c1020c502f89f4b.png)
Editado pela última vez por
Pedro123 em Ter Mar 08, 2011 14:31, em um total de 1 vez.
-
Pedro123
- Usuário Parceiro

-
- Mensagens: 60
- Registrado em: Qui Jun 10, 2010 22:46
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Mecanica - 1° Período
- Andamento: cursando
por LuizAquino » Ter Mar 08, 2011 09:57
No segundo passo, você só pode fazer

e

pois
x e
y são reais positivos, como diz no texto do exercício.
Além disso, no final ao invés de dizer que "(...) para todo x e y reais, teremos que (...)" você deveria ter dito "(...) para todo x e y reais positivos, teremos que (...)"
Abelardo escreveu:83) Mostre que existe a e b racionais tais que
![\sqrt[]{18 - 8 \sqrt[]{2}}=a + b\sqrt[]{2} \sqrt[]{18 - 8 \sqrt[]{2}}=a + b\sqrt[]{2}](/latexrender/pictures/8ea859c3d9626f90602be68cf7a92993.png)
DicaNote que:
![18 - 8 \sqrt[]{2} = \left(4 - \sqrt{2}\right)^2 18 - 8 \sqrt[]{2} = \left(4 - \sqrt{2}\right)^2](/latexrender/pictures/f5b7911bad8580b70f99f0fb6e895725.png)
.
Abelardo escreveu:87) Prove que, dado um número racional

e um número natural

, nem sempre
![\sqrt[n]{\frac{a}{b}} \sqrt[n]{\frac{a}{b}}](/latexrender/pictures/317d53501ad6cd19416e2938df2defda.png)
O texto do execício está incompleto. Por favor revise-o.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por Abelardo » Ter Mar 08, 2011 12:19
Na questão 83 cheguei a o valor
![a +\sqrt[]{2}.(b+1)=4 a +\sqrt[]{2}.(b+1)=4](/latexrender/pictures/791a399f862228e71443b314d816614f.png)
. Mas tenho um livro que diz: ''Para construção de irracionais é usar o fato de que, se

é irracional e

é racional não nulo, então:

são todos irracionais..
A questão 87 fiz assim: Admitamos que

e

são números racionais e n=2. Posso formar uma fração onde

. Logo

. Então
![\sqrt[2]{\frac{a}{b}}=\sqrt[2]{2} \sqrt[2]{\frac{a}{b}}=\sqrt[2]{2}](/latexrender/pictures/bdc4db9376e309fac3e6bdd7fb5638fa.png)
, onde raiz quadrada de dois é um irracional(Desculpe-me Professor Aquino, a questão estava incompleta mesmo)
-

Abelardo
- Colaborador Voluntário

-
- Mensagens: 159
- Registrado em: Qui Mar 03, 2011 01:45
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
por LuizAquino » Ter Mar 08, 2011 12:29
Abelardo escreveu:Na questão 83 cheguei a o valor
![a +\sqrt[]{2}.(b+1)=4 a +\sqrt[]{2}.(b+1)=4](/latexrender/pictures/791a399f862228e71443b314d816614f.png)
. Mas tenho um livro que diz: ''Para construção de irracionais é usar o fato de que, se

é irracional e

é racional não nulo, então:

são todos irracionais.
Note que:

. Lembrando que essa última simplificação só pode ser feita dese jeito pois

. Sendo assim, no exercício temos que
a=4 e
b=-1, que são ambos números racionais.
Abelardo escreveu:A questão 87 fiz assim: Admitamos que

e

são números racionais e n=2. Posso formar uma fração onde

. Logo

. Então
![\sqrt[2]{\frac{a}{b}}=\sqrt[2]{2} \sqrt[2]{\frac{a}{b}}=\sqrt[2]{2}](/latexrender/pictures/bdc4db9376e309fac3e6bdd7fb5638fa.png)
, onde raiz quadrada de dois é um irracional(Desculpe-me Professor Aquino, a questão estava incompleta mesmo)
Por favor, poste o texto completo da questão.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
Voltar para Álgebra Elementar
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Álgebra Elementar
por Abelardo » Seg Mar 14, 2011 18:09
- 1 Respostas
- 2311 Exibições
- Última mensagem por LuizAquino

Seg Mar 14, 2011 18:21
Álgebra Elementar
-
- Álgebra Elementar
por Thiago Josep » Sex Set 05, 2014 15:32
- 1 Respostas
- 2664 Exibições
- Última mensagem por DanielFerreira

Qui Jan 01, 2015 22:22
Álgebra Elementar
-
- Exercicio-Algebra elementar
por Renks » Seg Fev 14, 2011 20:38
- 3 Respostas
- 4727 Exibições
- Última mensagem por Renks

Ter Fev 15, 2011 13:55
Álgebra Elementar
-
- Questão - Álgebra Elementar
por Oliver » Qua Fev 16, 2011 13:10
- 1 Respostas
- 2550 Exibições
- Última mensagem por DanielFerreira

Qui Fev 17, 2011 16:32
Álgebra Elementar
-
- [Questão Álgebra Elementar] UF-RJ
por yuri_simplelife » Seg Dez 14, 2015 21:23
- 2 Respostas
- 2704 Exibições
- Última mensagem por yuri_simplelife

Dom Dez 20, 2015 22:56
Álgebra Elementar
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
Proporcionalidade
Autor:
silvia fillet - Qui Out 13, 2011 22:46
Divida o numero 35 em partes diretamente proporcionais a 4, 10 e 14. Em seguida divida o mesmo numero em partes proporcionais a 6, 15 e 21. explique por que os resultados sao iguais.
Assunto:
Proporcionalidade
Autor:
silvia fillet - Sáb Out 15, 2011 10:25
POR GENTILEZA PODEM VERIFICAR SE O MEU RACIOCINIO ESTÁ CERTO?
P1 = K.4 SUBSTITUINDO K POR 1,25 P1= 5
P2 = K.10 SUBSTITUINDO K POR 1,25 P2= 12,50
P3 = K.13 SUBSTITUINDO K POR 1,25 P3= 17,50
P1+P2+P3 = 35
K.4+K.10+K.13 = 35
28 K = 35
K= 1,25
P1 = K.6 SUBSTITUINDO K POR 0,835 P1= 5
P2 = K.15 SUBSTITUINDO K POR 0,835 P2 = 12,50
P3 = K.21 SUBSTITUINDO K POR 0,835 P3 = 17,50
K.6+K.15+K.21 = 35
42K = 35
K= 0,833
4/6 =10/15 =14/21 RAZÃO = 2/3
SERÁ QUE ESTÁ CERTO?
ALGUEM PODE ME AJUDAR A EXPLICAR MELHOR?
OBRIGADA
SILVIA
Assunto:
Proporcionalidade
Autor:
ivanfx - Dom Out 16, 2011 00:37
utilize a definição e não se baseie no exercícios resolvidos da redefor, assim você terá mais clareza, mas acredito que sua conclusão esteja correto, pois o motivo de darem o mesmo resultado é pq a razão é a mesma.
Assunto:
Proporcionalidade
Autor:
Marcos Roberto - Dom Out 16, 2011 18:24
Silvia:
Acho que o resultado é o mesmo pq as razões dos coeficientes e as razões entre os números são inversamente proporcionais.
Você conseguiu achar o dia em que caiu 15 de novembro de 1889?
Assunto:
Proporcionalidade
Autor:
deiasp - Dom Out 16, 2011 23:45
Ola pessoal
Tb. estou no redefor
O dia da semana em 15 de novembro de 1889, acredito que foi em uma sexta feira
Assunto:
Proporcionalidade
Autor:
silvia fillet - Seg Out 17, 2011 06:23
Bom dia,
Realmente foi uma sexta feira, como fazer os calculos para chegar ?
Assunto:
Proporcionalidade
Autor:
ivanfx - Seg Out 17, 2011 07:18
Para encontrar o dia que caiu 15 de novembro de 1889 você deve em primeiro lugar encontrar a quantidade de anos bissextos que houve entre 1889 à 2011, após isso dá uma verificada no ano 1900, ele não é bissexto, pois a regra diz que ano que é múltiplo de 100 e não é múltiplo de 400 não é bissexto.
Depois calcule quantos dias dão de 1889 até 2011, basta pegar a quantidade de anos e multiplicar por 365 + 1 dia a cada ano bissexto (esse resultado você calculou quando encontrou a quantidade de anos bissextos)
Pegue o resultado e divida por 7 e vai obter o resto.
obtendo o resto e partindo da data que pegou como referência conte a quantidade do resto para trás da semana.
Assunto:
Proporcionalidade
Autor:
silvia fillet - Seg Out 17, 2011 07:40
Bom dia,
Será que é assim:
2011 a 1889 são 121 anos sendo , 30 anos bissextos e 91 anos normais então temos:
30x366 = 10.980 dias
91x365 = 33.215 dias
incluindo 15/11/1889 - 31/12/1889 47 dias
33215+10980+47 = 44242 dias
44242:7 = 6320 + resto 2
è assim, nâo sei mais sair disso.
Assunto:
Proporcionalidade
Autor:
ivanfx - Seg Out 17, 2011 10:24
que tal descontar 1 dia do seu resultado, pois 1900 não é bissexto, ai seria 44241 e quando fizer a divisão o resto será 1
como etá pegando base 1/01/2011, se reparar bem 01/01/2011 sempre cai no mesmo dia que 15/01/2011, sendo assim se 01/01/2011 caiu em um sábado volte 1 dia para trás, ou seja, você está no sábado e voltando 1 dia voltará para sexta.então 15/11/1889 cairá em uma sexta
Assunto:
Proporcionalidade
Autor:
Kiwamen2903 - Seg Out 17, 2011 19:43
Boa noite, sou novo por aqui, espero poder aprender e ajudar quando possível! A minha resposta ficou assim:
De 1889 até 2001 temos 29 anos bissextos a começar por 1892 (primeiro múltiplo de 4 após 1889) e terminar por 2008 (último múltiplo de 4 antes de 2011). Vale lembrar que o ano 1900 não é bissexto, uma vez que é múltiplo de 100 mas não é múltiplo de 400.
De um ano normal para outro, se considerarmos a mesma data, eles caem em dias consecutivos da semana. Por exemplo 01/01/2011 – sábado, e 01/01/2010 – sexta.
De um ano bissexto para outro, se considerarmos a mesma data, um cai dois dias da semana depois do outro. Por exemplo 01/01/2008 (ano bissexto) – Terça – feira, e 01/01/09 – Quinta-feira.
Sendo assim, se contarmos um dia da semana de diferença para cada um dos 01/01 dos 122 anos que separam 1889 e 2011 mais os 29 dias a mais referentes aos anos bissextos entre 1889 e 2011, concluímos que são 151 dias da semana de diferença, o que na realidade nos trás: 151:7= 21x7+4, isto é, são 4 dias da semana de diferença. Logo, como 15/11/2011 cairá em uma terça-feira, 15/11/1889 caiu em uma sexta-feira.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.