• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Questão prova concurso com radicais

Questão prova concurso com radicais

Mensagempor fernandocez » Qui Mar 03, 2011 17:26

Caro amigos do Forum, essa eu pensei que ia matar fácil mas quebrei a cara.

36. Na igualdade \frac{\sqrt[]{7}+\sqrt[]{5}}{\sqrt[]{7}-\sqrt[]{5}} = a + \sqrt[]{b}, o valor de a² - b é:
Resposta: 1

Eu tentei assim:
\frac{\sqrt[]{7}+\sqrt[]{5}}{\sqrt[]{7}-\sqrt[]{5}} . \frac{\sqrt[]{7}+\sqrt[]{5}}{\sqrt[]{7}-\sqrt[]{5}} = \frac{7+2\sqrt[]{5} \sqrt[]{7}+5}{7-2\sqrt[]{5}\sqrt[]{7}+5} = \frac{12+2\sqrt[]{5}\sqrt[]{7}}{12-2\sqrt[]{5}\sqrt[]{7}}

E ai não consegui desenvolver mais.
Avatar do usuário
fernandocez
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 131
Registrado em: Seg Fev 14, 2011 15:01
Localização: São João de Meriti - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: licenciatura em matemática
Andamento: formado

Re: Questão prova concurso com radicais

Mensagempor LuizAquino » Qui Mar 03, 2011 17:32

Dica

Se o objetivo é racionalizar uma fração do tipo \frac{\sqrt{a} + \sqrt{b}}{\sqrt{a} - \sqrt{b}}, com a e b positivos, então você precisa fazer a operação \frac{\sqrt{a} + \sqrt{b}}{\sqrt{a} - \sqrt{b}}\cdot \frac{\sqrt{a} + \sqrt{b}}{\sqrt{a} + \sqrt{b}} = \frac{(\sqrt{a} + \sqrt{b})^2}{a - b}.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Questão prova concurso com radicais

Mensagempor fernandocez » Qui Mar 03, 2011 19:46

Valeu Luiz, eu racionalizei errado. Mas agora travei mas na frente se é que esse é o caminho.

\frac{{\left(\sqrt[]{7}+\sqrt[]{5} \right)}^{2}}{\left(7-5 \right)} = a + \sqrt[]{b} = \frac{{\left(\sqrt[]{7}+\sqrt[]{5} \right)}^{2}}{\left2 \right} = a + \sqrt[]{b} =
= {\left(\sqrt[]{7}+\sqrt[]{5} \right)}^{2}=2\left(a+\sqrt[]{b} \right) = \left(\sqrt[]{7}+\sqrt[]{5} \right) = \sqrt[]{2a+2\sqrt[]{b}}

Daqui não consigo mais.
Avatar do usuário
fernandocez
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 131
Registrado em: Seg Fev 14, 2011 15:01
Localização: São João de Meriti - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: licenciatura em matemática
Andamento: formado

Re: Questão prova concurso com radicais

Mensagempor LuizAquino » Qui Mar 03, 2011 23:53

Desenvolva a expressão \frac{{\left(\sqrt[]{7}+\sqrt[]{5} \right)}^{2}}{\left(7-5 \right)} o máximo possível para encontrar um número que esteja no formato a + \sqrt{b}.

Aqui vai outra dica: lembre-se do produto notável (x+y)^2=x^2+2xy+y^2.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Questão prova concurso com radicais

Mensagempor fernandocez » Sex Mar 04, 2011 00:49

Obrigado Luiz, consegui fazer.

\frac{{\left(\sqrt[]{7}\sqrt[]{5} \right)}^{2}}{7-5} = \frac{7+2\sqrt[]{5}\sqrt[]{7}+5}{2} = \frac{12}{2}+\frac{2\sqrt[]{5}\sqrt[]{7}}{2} =

= 6+\sqrt[]{5}\sqrt[]{7} = a+\sqrt[]{b}

a = 6 \Leftrightarrow a² = 36

\sqrt[]{b} = \sqrt[]{5}\sqrt[]{7} \Leftrightarrow {\left(\sqrt[]{b} \right)}^{2}={\left(\sqrt[]{5}\sqrt[]{7} \right)}^{2}
{a}^{2}-b = 36-35=1
Avatar do usuário
fernandocez
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 131
Registrado em: Seg Fev 14, 2011 15:01
Localização: São João de Meriti - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: licenciatura em matemática
Andamento: formado

Re: Questão prova concurso com radicais

Mensagempor LuizAquino » Sex Mar 04, 2011 09:29

fernandocez escreveu:Obrigado Luiz, consegui fazer.

\frac{{\left(\sqrt[]{7}\sqrt[]{5} \right)}^{2}}{7-5} = \frac{7+2\sqrt[]{5}\sqrt[]{7}+5}{2} = \frac{12}{2}+\frac{2\sqrt[]{5}\sqrt[]{7}}{2} =

= 6+\sqrt[]{5}\sqrt[]{7} = a+\sqrt[]{b}

a = 6 \Leftrightarrow a^2 = 36

\sqrt[]{b} = \sqrt[]{5}\sqrt[]{7} \Leftrightarrow {\left(\sqrt[]{b} \right)}^{2}={\left(\sqrt[]{5}\sqrt[]{7} \right)}^{2}

{a}^{2}-b = 36-35=1


Apenas uma correção: onde há \frac{{\left(\sqrt[]{7}\sqrt[]{5} \right)}^{2}}{7-5} o correto é \frac{{\left(\sqrt[]{7}+\sqrt[]{5} \right)}^{2}}{7-5}
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Questão prova concurso com radicais

Mensagempor fernandocez » Sex Mar 04, 2011 12:48

Valeu Luiz. Correção feita.
Avatar do usuário
fernandocez
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 131
Registrado em: Seg Fev 14, 2011 15:01
Localização: São João de Meriti - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: licenciatura em matemática
Andamento: formado


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?