Provas
Regras do fórum
- Não envie somente enunciados de problemas, informe suas tentativas e dificuldades!
Queremos que a "ajuda" represente um trabalho interativo, pois saber especificar a dúvida exige estudo.
Serão desconsiderados tópicos apenas com enunciados, sem interação. Nosso objetivo não é resolver listas de exercícios;
- Para não haver má interpretação em suas postagens, especialmente na precedência das operações, utilize LaTeX, podendo ser a partir do botão "editor de fórmulas".
Bons estudos!
por admin » Qua Jan 23, 2008 13:41
Por ser uma resolução antecipada, estejam a vontade para escreverem comentários e/ou eventuais correções, assim como postarem suas próprias resoluções. Na ocasião do gabarito oficial, faremos uma comparação das respostas.
Questão 1)Um pai tem, hoje, 50 anos e os seus três filhos têm 5, 7 e 10 anos, respectivamente. Daqui a quantos anos a soma das idades dos três filhos será igual à idade do pai?
Resolução)Idéia da situação:

Sendo

o número de anos decorridos.
Queremos que:




Resposta: daqui a 14 anos.
Conferindo: o pai terá 64 anos, assim como a soma das idades dos filhos (19, 21 e 24).
-

admin
- Colaborador Administrador - Professor

-
- Mensagens: 885
- Registrado em: Qui Jul 19, 2007 10:58
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática IME-USP
- Andamento: formado
por admin » Qua Jan 23, 2008 15:53
Questão 2)Durante quanto tempo deve ser aplicado um determinado capital, a juros simples e à taxa de 0,75% ao mês, para que o montante, no final da aplicação, seja igual a

do capital aplicado?
Resolução)Informações:
-juros simples
C: capital inicial
J: total acumulado de juros no período
t: número de meses
i: taxa de juros
M: montante final
t=?
i=0,75% a.m.



Condição do problema:








meses
-

admin
- Colaborador Administrador - Professor

-
- Mensagens: 885
- Registrado em: Qui Jul 19, 2007 10:58
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática IME-USP
- Andamento: formado
por admin » Qua Jan 23, 2008 21:57
Questão 3)Para que valores de

a equação

admite raízes reais, distintas e ambas negativas?
Resolução)Condições:
i) raízes reais
ii) raízes distintas
iii) ambas negativas
Através do discriminante, verificamos as condições
i e
ii.



O discriminante em

, representa outra função do segundo grau que não possui raízes reais (possui um par de raízes complexas) e sua parábola é côncava para cima. Ou seja,

é sempre positivo:

De modo que valerá
i e
ii para todo

.
Vamos analisar
iii através da soma e do produto das raízes.
Soma:

Produto:

Para que as raízes sejam ambas negativas, a soma deverá ser negativa
e seu produto positivo:




Da intersecção (
e):

sendo

.
-

admin
- Colaborador Administrador - Professor

-
- Mensagens: 885
- Registrado em: Qui Jul 19, 2007 10:58
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática IME-USP
- Andamento: formado
Voltar para Vestibulares
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Prova UNIFEI 2008
por admin » Qua Jan 23, 2008 19:24
- 0 Respostas
- 2704 Exibições
- Última mensagem por admin

Qua Jan 23, 2008 19:24
Vestibulares
-
- [Provas por Indução Matemática] Ajuda, por favor!
por aprendizdematematico » Seg Abr 30, 2012 14:23
- 1 Respostas
- 1655 Exibições
- Última mensagem por MarceloFantini

Sáb Mai 05, 2012 20:56
Estatística
-
- Unifei - prova3 2007
por WiLLKun » Ter Jan 15, 2008 23:42
- 10 Respostas
- 15162 Exibições
- Última mensagem por admin

Sáb Abr 05, 2008 17:18
Vestibulares
-
- UNIFEI 2006- Probabilidade
por Luiz C » Qua Jan 13, 2010 23:50
- 2 Respostas
- 3049 Exibições
- Última mensagem por Luiz C

Qui Jan 14, 2010 17:35
Estatística
-
- provas de Introdução à Análise
por ferbonin » Dom Ago 05, 2007 23:08
- 1 Respostas
- 2581 Exibições
- Última mensagem por admin

Ter Ago 28, 2007 03:08
Pedidos de Materiais
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.