• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Comprimento do arco!! Urgente!!

Comprimento do arco!! Urgente!!

Mensagempor manuoliveira » Ter Out 23, 2012 20:34

Ache o comprimento do arco da curva definida por x = t³/3 e y = t²/2 do ponto A = (0, 0) ao ponto B = (1/3, 1/2)

Agradeço desde já quem puder ajudar!!!
manuoliveira
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 61
Registrado em: Qui Abr 01, 2010 19:58
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Química
Andamento: cursando

Re: Comprimento do arco!! Urgente!!

Mensagempor manuoliveira » Ter Out 23, 2012 20:44

Cheguei ao resultado 1/3 mas não tenho gabarito. Gostaria de saber se confere. Caso não, como resolver?
manuoliveira
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 61
Registrado em: Qui Abr 01, 2010 19:58
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Química
Andamento: cursando

Re: Comprimento do arco!! Urgente!!

Mensagempor young_jedi » Ter Out 23, 2012 20:53

para comprimentos de arcos voce deve utilizar a integral

\int\sqrt{\left(\frac{dx}{dt}\right)^2+\left(\frac{dy}{dt}\right)^2}.dt

utilizando isto com as equações de x e y que voce tem

\int_{0}^{1}\sqrt{(t^2)^2+t^2}dt

\int_{0}^{1}t\sqrt{t^2+1}dt

por substituição

u=t^2+1
du=2t.dt

\frac{1}{2}\int\sqrt{u}du=

\frac{1}{3}(t^2+1)^{\frac{3}{2}}\Big|_{0}^{1}=

\frac{2\sqrt{2}}{3}-\frac{1}{3}
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: Comprimento do arco!! Urgente!!

Mensagempor Russman » Ter Out 23, 2012 20:59

Suponhamos que o comprimento da curva entre os pontos A e B seja S. Vamos dividir esse arco em n pequenos intervalos \Delta S de forma que \Delta S^2 = \Delta x^2+\Delta y^2.
Quanto menores forem estes intervalos mais exato se torna essa aproximação de forma que

\lim_{n\rightarrow \infty  }\Delta S=ds \Rightarrow ds^2=dx^2+dy^2.

Como S=\int_{A}^{B}ds basta tomarmos ds=\sqrt{dx^2+dy^2} e integrar.

Veja que a curva esta parametrizada, isto é, x=x(t) e y=y(t) de onde

dx = \frac{\mathrm{d} x}{\mathrm{d} t}dt = \left (\frac{\mathrm{d} }{\mathrm{d} t}\frac{t^3}{3}  \right )dt = t^2dt

dy = \frac{\mathrm{d} y}{\mathrm{d} t}dt = \left (\frac{\mathrm{d} }{\mathrm{d} t}\frac{t^2}{2}  \right )dt = t dt

e portanto

ds^2 = (t^2dt)^2 + (tdt)^2 = (t^4 + t^2)dt^2\Rightarrow ds = dt \sqrt{t^4+t^2}.

O ponto A é obtido tomando t=0 e o B tomando t=1. Finalmente,

S=\int_{0}^{1} dt \sqrt{t^4+t^2}.

Agora basta integral. (:
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: Comprimento do arco!! Urgente!!

Mensagempor manuoliveira » Ter Out 23, 2012 21:43

Obrigada!!
manuoliveira
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 61
Registrado em: Qui Abr 01, 2010 19:58
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Química
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.