• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Problema com parábola

Problema com parábola

Mensagempor Eusouopapao » Ter Out 09, 2012 13:28

Boas é o seguinte:

Considere um cesto de basquetebol colocado a 3m do chão (um ponto), e suponha que um
jogador faz um lancamento a 6m de distância do cesto (a bola e lancada a uma altura de
2m). A tabela tem 1m de altura (colocada entre os 2,6m e os 3,6m), e esta 25cm atras
do cesto. A bola, quando embate da tabela, assume a trajetoria simetrica relativamente
ao eixo da tabela.
1. Supondo que a trajetoria da bola e parabolica, determine o vertice de cada parabola
que ''coloca" a bola no cesto diretamente.

Não sei se é por estar a desenhar mal a situação mas não estou a chegar a conclusão nenhuma na pergunta 1, tentei todas as maneiras perceber de como desenhar a trajectória da bola de forma a fazer uma parábola e acertar no cesto.
Eu acho que a parábola ia ficar de concavidade para baixo e ter dois zeros e ai conseguia achar os vértices mas eu nem estou a ver como é que ponho a parábola a passar no cesto e daí concluir que vertices são.

Agradecia algumas dicas.
Eusouopapao
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Qui Mar 08, 2012 01:00
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Voltar para Equações

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.